

## **FILE COPY**

# STORMWATER MANAGEMENT REPORT

PARKERS PLACE MULTI-FAMILY DEVELOPMENT PARK PLACE (MAP 11.1, LOT 11) EAST LYME, CT

PREPARED FOR

OWNER / APPLICANT PARKERS PLACE LLC PO BOX 817 EAST LYME, CT 06333

DATE:

**SEPTEMBER 29, 2025** 

REVISED:

Received

OCT 9 2025

Town of East Lyme Land Use



ş f



## TABLE OF CONTENTS

| APPLICANT / SITE INFORMATION1                                                       |  |
|-------------------------------------------------------------------------------------|--|
| PROJECT DESCRIPTION AND PURPOSE1 DESCRIPTION OF EXISTING SITE1                      |  |
| DESCRIPTION OF EXISTING SITE 1                                                      |  |
| STORMWATER MANAGEMENT2                                                              |  |
|                                                                                     |  |
|                                                                                     |  |
| STRUCTURAL STORMWATER BMP TREATMENT AND POLLUTANTS                                  |  |
|                                                                                     |  |
|                                                                                     |  |
| CONCLUSION 5  CONSTRUCTION EROSION AND SEDIMENT CONTROL                             |  |
| CONSTRUCTION EROSION AND SEDIMENT CONTROL6  OPERATION AND MAINTENANCE6              |  |
| OPERATION AND MAINTENANCE                                                           |  |
| TABLES 6                                                                            |  |
| TABLE 1: PROPOSED TREATMENT SUMMARY                                                 |  |
| TABLE 1: PROPOSED TREATMENT SUMMARY                                                 |  |
| APPENDICES 5                                                                        |  |
| A. DRAINAGE MAPS AND WATERSHED DATA B. HYDROLOGIC CALCULATIONS C. SUPPLEMENTAL DATA |  |

|          |  | ų. |   |
|----------|--|----|---|
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    | = |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
| <b>-</b> |  |    |   |
|          |  |    |   |
|          |  |    |   |
| _        |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |
| _        |  |    |   |
|          |  |    |   |
|          |  |    |   |
|          |  |    |   |



## APPLICANT / SITE INFORMATION

OWNER / APPLICANT Parkers Place LLC PO Box 817 East Lyme, CT 06333 SITE

Map 11.1, Lot 11 Park Place

East Lyme, CT 06357

## PROJECT DESCRIPTION AND PURPOSE

Parkers Place LLC is proposing to construct a multi-family development with associated amenities on a 6.98-acre parcel of land located on Park Place in East Lyme, CT. The subject parcel is identified as Map 11.1, Lot 11 on the Town of East Lyme Tax Assessor Mapping and is depicted on a map entitled "Topographic Survey Prepared for Pazz Construction LLC, Park Place - East Lyme, Connecticut", Date: January 23, 2023 as revised through 1-31-23, Scale: 1" = 50', prepared by Robert C. Simoni, Licensed Land Surveyor. The above-described parcel is hereinafter referred to as "Site".

The multi-family development will consist of the construction of 10 townhouse style buildings with a total of 60 residential two-bedroom units. Main access will be provided from the southeast via a

The full development will include the following improvements:

- 60 two-bedroom townhouse units in ten residential buildings
- 24' wide primary and secondary access driveways
- Pedestrian sidewalks with connection to Park Place
- 146 parking spaces including garages, driveways, and guest parking
- Pole-mounted area lighting of driveways and parking areas
- Exterior active and passive recreation areas and trails
- Stormwater management system consisting of collection, treatment, retention, and attenuation of peak flow rates to maintain existing drainage patterns and discharge conditions
- Sanitary sewer utility including extension of the existing public main in Park Place to serve the site and a private sanitary main to serve the development
- Private water main to serve the development with connection to the existing water main in
- Electric and telecommunication utility connections to the overhead utilities in Park Place along

This stormwater management report has been prepared by a professional engineer licensed in the State of Connecticut and provides a comprehensive evaluation of the fully developed Site as compared to existing (pre-developed) conditions. This report concludes that; drainage patterns will be generally maintained, there will be zero net increase in park flow rates discharging from the Site, and stormwater will be retained and treated to the maximum extent achievable in accordance with the 2024 Stormwater



## DESCRIPTION OF EXISTING SITE

The existing 6.98-acre site is currently undeveloped. A review of historical aerial images confirms that the parcel has remained undeveloped since at least 1990. The 1934 aerial depicts the southern half of the site as cleared for apparent agricultural uses. The cleared areas are now revegetated and wooded.

TOPOGRAPHY - Natural topography of the parcel slopes from a high point along the northerly boundary in a south and southeasterly direction towards Park Place and West Main Street (Route 1). The northern half of the parcel has moderate to steep slopes ranging from 10% to 20%. The southern half of the parcel flattens into a topographic saddle with gentle to moderate slopes ranging from 2%

SOILS - The USDA NRCS Web Soil Survey depicts the Site within Charlton-Chatfield complex soils, very rocky, with slopes ranging from 0% to 45%. These soils are well drained with a Hydrologic Soil Group (HSG) rating of B. See Appendix C.

Deep observation pit testing was performed extensively over the site on three separate dates.

- Test pits 1 through 10 were performed in 2022 by Robert Pfanner, Jr. concentrated on the northerly wooded areas.
- Test pits 111 through 114 were performed in 2023 by Uncas Health District and Yantic River Consultants on the central wooded areas towards the toe of steeper slopes.
- Test pits D1 through D3 were performed in the southerly depression in the location of the proposed retention/detention basin. Witnessed soils consisted of topsoil to 6"-8", orange brown fine sandy loam to 28"-32", gray tan fine to medium sandy loam to 54"-88", and gray fine to medium sand and gravel slightly compact to 88"-96". Roots were witnessed 72" to 78" below grade with no clear indicator of seasonally high groundwater.

<u>VEGETATION</u> – The parcel is wooded with light to moderate undergrowth in southerly areas and moderate to dense undergrowth on the northerly steeper slopes.

<u>DRAINAGE</u> – Stormwater generally flows overland from the north to south on the parcel. Three drainage areas with distinct discharge points at the parcel property lines were identified based on topographic mapping and field confirmation.

- EX-01SW is 5.183 acres and encompasses the north and west portions of the Site with a discharge point at a low point along the southwesterly property line onto the rear yard of a property at 53 West Main Street.
- EX-02E is 1.389 acres and encompasses the southeastern corner of the Site with a discharge point in a depressed area along the easterly property line onto the rear yard of a property at 8 Park Place.
- EX-03S is 0.410 acres and encompasses the frontage portion of the Site with sheet flow discharge to the Park Place ROW.



## STORMWATER MANAGEMENT

The following Standards were considered in the analysis and design.

## SUMMARY OF APPLICABLE DESIGN CRITERIA

Hydrologic Design Criteria:

TR-55

Hydraulic Design Criteria:

CTDOT Drainage Manual

Climate Change Considerations:

CT DEEP Stormwater Quality Manual

Flood Hazard Areas:

N/A

Aquifer Protection Areas:

N/A

Treatment and Pollutant Removal:

CT DEEP Stormwater Quality Manual

Peak Flow Control Goal:

Zero Net Increase in Peak Flow from Site

# SUMMARY OF LID TO REDUCE STORMWATER RUNOFF AND POLLUTANTS

Low Impact Development techniques were implemented to the maximum extent achievable prior to the consideration of structural stormwater best management practices (BMP) in accordance with the 2024 SQM. A list of LID techniques implemented into the design are provided below. It should be noted that as a conservative measure the design of the structural stormwater BMP does not take into consideration the hydrologic benefit of these measures.

- Minimize clearing: The limits of clearing shown are the minimum necessary to accommodate construction and provide adequate separation to each new building. Stumps will remain and native understory plants and shrubs preserved outside of the land disturbance footprint.
- Minimize building footprint: The multi-family building footprints have been reduced to the greatest extent possible while still achieving the purpose of the project.
- Minimize roadways, parking, and impervious surfaces: Parking quantities meet the minimum
- Preserving pre-development times of concentration to the maximum extent achievable.
- Use of low maintenance landscaping on perimeter areas.
- Disconnection of Impervious Surfaces:
  - Disconnection of all rear roof pitches through discharge to grade over vegetated areas.
  - Long and flat vegetated diversion swales to increase local flow path lengths and times
  - Vegetated depressions with elevation yard drain grates.
  - o Disconnection of impervious surfaces within stormwater collection system through



# STRUCTURAL STORMATER BMP TREATMENT AND POLLUTANT REMOVAL

The design approach selected for the project consists of a multi-stage collection, treatment, retention, and attenuation system. The stages will consist of the following:

- Disconnect impervious surfaces to the maximum extent achievable prior to entering stormwater structural BMP.
- Install catch basin structures with minimum 2' sumps.
- First stage treatment: Discharge of stormwater from collections systems through sediment forebay capable of retaining a minimum of 25% of the water quality flow. Excess flows will bypass through a riprap filter berm and weir into the second stage treatment.
- Second stage treatment: Retain the Water Quality Volume (WQV) below the low-level orifice within the outlet structure to promote infiltration and recharge of groundwater for 90% of all storm events during a given year. The bottom of the basin will be excavated to elevation 25.00, which is 3'-4' below existing grade into the witnessed sandy loam soils. A minimal exfiltration rate of 0.3 in/hr was used in the analysis to confirm drain times of the retention area. The NRCS published exfiltration rate (hydraulic conductivity) of the existing sandy loam subsoils is 1.4 in/hr, therefore a quicker drain time and further reduction of peak flow rates is anticipated.
  - Final stage: Peak flow control through an outlet structure and weir plate to attenuate peak flow rates for the 1-year to 100-year storm events.

| Tates   | 101 111 |       |         |            | PRO                  | POSED TRE | ATME | VT    |               |
|---------|---------|-------|---------|------------|----------------------|-----------|------|-------|---------------|
| AREA    | DA      | IA    | WQV     | WQF        |                      | Vol       | Flow | Area  | Note          |
| Label   | acre    | acre  | acre-ft | cfs        | Method               | 0.059     | N/A  | N/A   | 25% WQV       |
| PR-01SW | 5.852   | 2.095 | 0.236   | 1.5        | Sediment Forebay     | 0.339     | N/A  | N/A   | 144% WQV      |
|         | 5.852   | 2.095 | 0.236   | 1.5        | Retention            | N/A       | N/A  | N/A   | No Impervious |
| PR-01SW | 0.627   | 0.000 | 0.000   | 0.0        | N/A                  |           | N/A  | N/A   | Sheet Flow    |
| PR-02E  | _       | 0.120 | 0.014   | 0.1        | Simple Disconnection | N/A       | IVA  | 14/22 |               |
| PR-03S  | 0.504   | 0.120 | U.U.T.  | OT 17 1. D | ROPOSED TREATMENT SU | MMARY     |      |       |               |

The proposed Stormwater Management System will retain the calculated WQV from the developed Site in accordance with the 2024 Stormwater Quality Manual.

### PEAK FLOW CONTROL

Peak flow rates were calculated using TR-55 methodology. Hydrology Studio 2024 v.3.0.0.38 was used to generate peak flows with the following parameters for existing and proposed conditions:

DRAINAGE AREA: A description of the three drainage areas for existing Site and discharge points at the property lines are provided above. The proposed drainage areas were delineated based on proposed grading and drainage collection system routing. The same general discharge points were maintained for both existing and proposed conditions. See Appendix A for maps.

PR-01SW is 5.852 acres and encompasses the north and west portions of the developed Site with the same discharge point at a low point along the southwesterly property line. The retention and attenuation basin with stage-discharge outlet is located immediately prior to the discharge point.



- PR-02E is 0.627 acres and encompasses the undisturbed eastern corner of the Site with a discharge point in a depressed area along the easterly property line.
- PR-03S is 0.504 acres and encompasses the frontage portion of the developed Site with sheet flow discharge to the Park Place ROW.
- RAINFALL: Precipitation frequency and depth estimates (rainfall data) were obtained from NOAA Atlas 14, Volume 10, Version 3 at the Site geographic location. See Appendix C.
- CURVE NUMBER: Composite curve numbers (CN) were calculated based on the land cover types with consideration of the hydrologic soil groups and slopes. Based on USDA NRCS Web Soil Survey, soils within the subject watershed consist of HSG B.
- TIME OF CONCENTRATION: Time of concentrations (Tc) were estimated based on a review of topographic and surface runoff conditions for both existing and proposed conditions.

### PEAK FLOW CALCULATIONS

A summary of flows (CFS) for existing and proposed conditions is provided below with a complete

| M     | -    | A     | REA ( | 01 (SW)         |        | A    | REA ( | 02 (E)         | T A  | REA ( | 13 (8) | 1     |       |      |          |        |
|-------|------|-------|-------|-----------------|--------|------|-------|----------------|------|-------|--------|-------|-------|------|----------|--------|
| STORM | EX   | PR    | DET   | EX<br>vs.<br>PR | EX vs. | EX   | PŖ    | EX vs.         | EX   | PR    | EX vs. | EX    | PR    | DET  | E EX vs. | EX vs. |
| 1     | 0.17 | 2.37  | 0.00  | 2.21            | -0.17  | 0.05 | 0.03  | PR             |      |       | PR     |       |       |      | PR       | DET    |
| 2     | 0.52 | 3.68  | 0.18  | 3.16            | -0.33  | 0.16 | 0.03  | -0.02          | 0.01 | 0.15  | 0.14   | 0.22  | 2.54  | 0.17 | 2.32     | -0.05  |
| 5     | 1.60 | 6.08  | 0.81  | 4.49            | -0.79  |      |       | -0.07          | 0.05 | 0.26  | 0.21   | 0.69  | 4.02  | 0.35 | 3.32     |        |
| 10    | 2.86 | 8.27  | 1.35  | 5.41            |        | 0.52 | 0.29  | -0.24          | 0.17 | 0.47  | 0.31   | 2.19  | 6.76  | 0.92 |          | -0.34  |
| 25    | 4.91 | 11.37 | 3.64  |                 | -1.52  | 0.94 | 0.50  | -0.45          | 0.30 | 0.67  | 0,37   | 3.96  |       |      | 4.57     | -1.27  |
| 50    | 6.60 |       |       | 6.46            | -1.27  | 1.60 | 0.83  | -0.78          | 0.51 | 0.96  | 0.45   |       | 9.28  | 1.55 | 5.32     | -2.41  |
| -     |      | 13.77 | 5.20  | 7.17            | -1.41  | 2.15 | 1.10  | -1.06          | 0.68 |       |        | 6.76  | 12.88 | 4.09 | 6.12     | -2.67  |
| 00    | 8.55 | 16.38 | 8.32  | 7.84            | -0.23  | 2.78 | 1.40  |                |      | 1.18  | 0.50   | 9.08  | 15.67 | 5.82 | 6.59     | -3.26  |
|       |      |       |       |                 | TAI    |      |       | -1.38<br>LOW C | 0.88 | 1.43  | 0.55   | 11.74 | 18.74 | 9.15 | 7.00     | -2.59  |

A comparison of peak flow control for each subarea and the entire Site is provided below:

AREA 01: Peak flow rates discharging to the southwest property line of the Site will be reduced for the 1-year to 100-year storm events. The decrease in peak flow rates can be attributed to the retention and attenuation provided by the proposed basin and outlet structure. The proposed basin fully retains the calculated water quality volume (1.3") and the 1-year storm event (2.87") without discharge.

AREA 02: Peak flow rates discharging to the eastern property line will be reduced for the 1-year to 100-year storm events due to the reduction in total area and minimal disturbance of existing

AREA 03: Peak flow rates discharging to the Park Place ROW will slightly increase for the 1-year

SITE: Overall peak flow rates discharging from the developed site will be reduced for the 1-year to 100-year storm events as compared to existing (pre-developed) conditions.



As described above, disconnection of impervious surfaces prior to the stormwater structural BMPs were not considered in the analysis as a conservative measure. As such, calculated peak flow rates for proposed conditions would likely be further reduced, in particular for more frequent storm events (< 2-year).

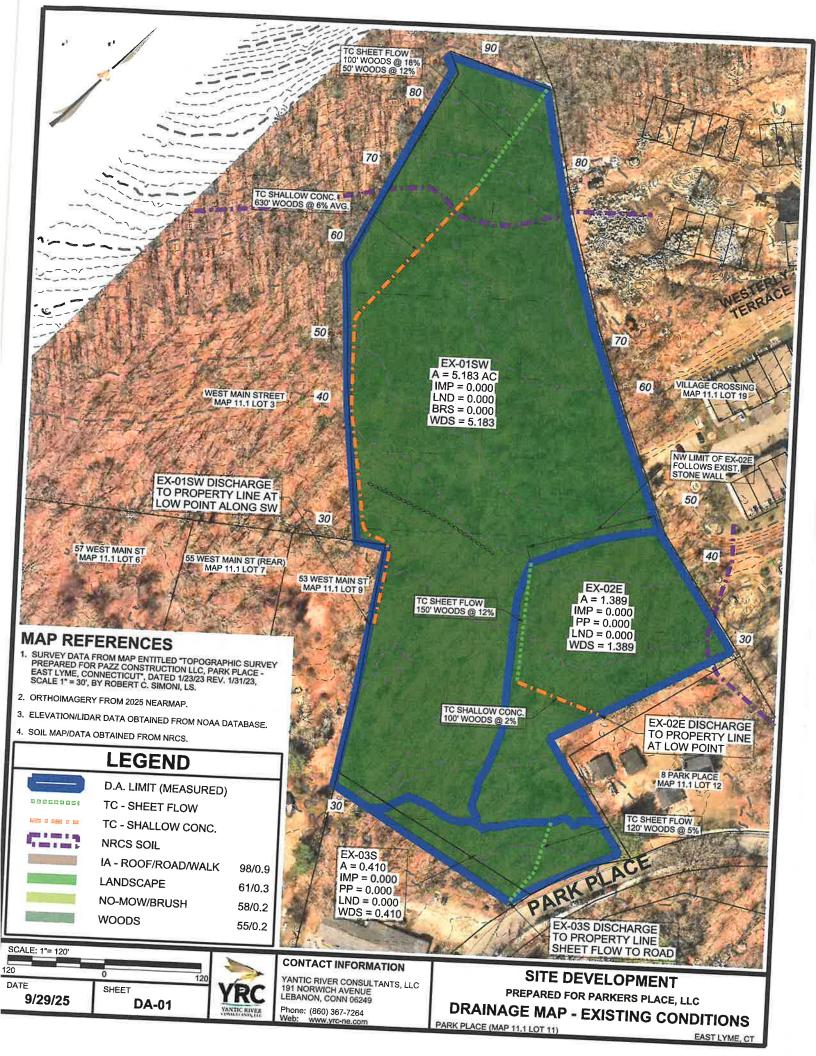
### CONCLUSION

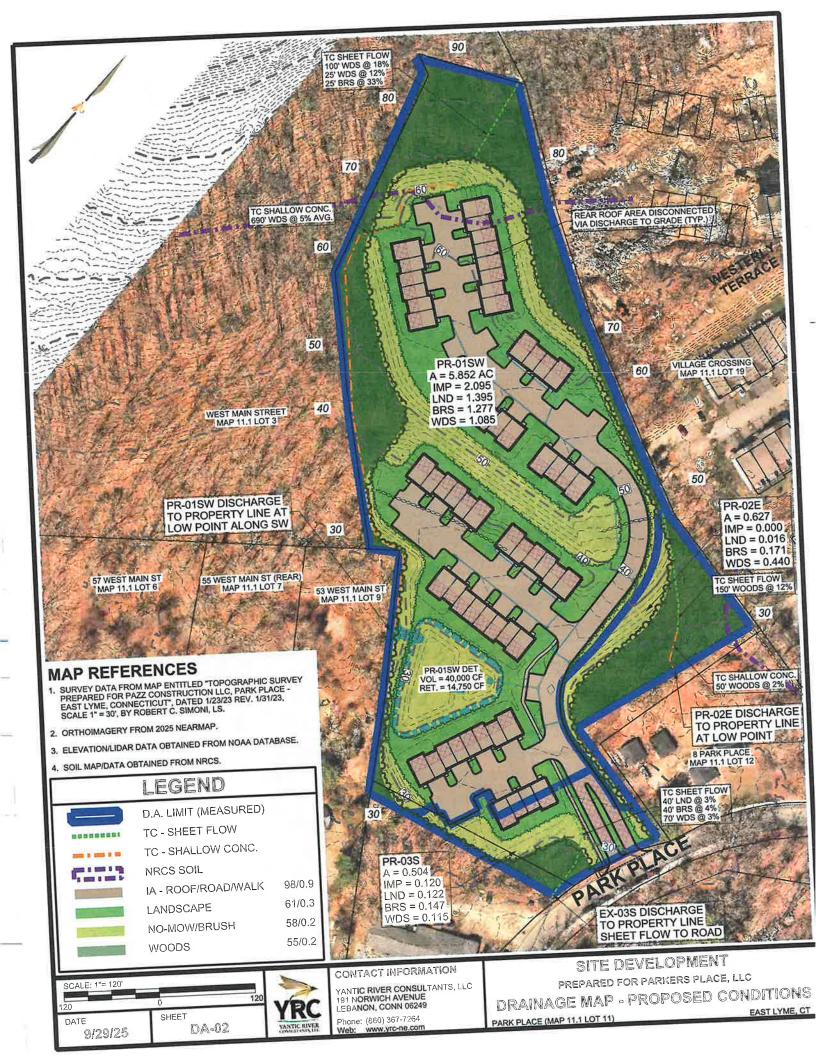
The proposed development and stormwater management system reduce peak flow rates discharging from the Site for the 1-year to 100-storm events, thereby meeting the zero net increase in stormwater runoff requirement. There are no anticipated adverse impacts on downstream properties or the Park Place ROW.

# CONSTRUCTION EROSION AND SEDIMENT CONTROL

A plan to control construction related impacts, including erosion, sedimentation, and other pollutant sources has been prepared in accordance with the 2023 Connecticut Guidelines for Soil Erosion and Sediment Control. The Erosion and Sediment Control Plan is included in the submitted plan set.

## OPERATION AND MAINTENANCE


A long-term operation and maintenance plan has been developed to ensure that stormwater management systems function as designed. The O&M plan is provided on the Grading and Utility Plan as part of the submitted plan set.




## APPENDIX A DRAINAGE AREA MAPS

EXISTING CONDITIONS PROPOSED CONDITIONS

|  |  | ś |     |
|--|--|---|-----|
|  |  |   |     |
|  |  |   |     |
|  |  |   | .00 |
|  |  |   |     |
|  |  |   |     |
|  |  |   |     |
|  |  |   |     |
|  |  |   |     |
|  |  |   |     |
|  |  |   |     |
|  |  |   |     |







# APPENDIX B HYDROLOGIC COMPUTATIONS

HYDROLOGY STUDIO REPORT DEEP SQM TREATMENT CALCULATIONS

| В    | in Model Schematic                                                                                |   |
|------|---------------------------------------------------------------------------------------------------|---|
| Н    | in Model Schematic rograph by Return Period                                                       | 1 |
| 1 -  | rograph by Return Period<br>′ear                                                                  | 2 |
|      |                                                                                                   |   |
|      | Hydrograph Summary  Hydrograph Reports                                                            | 3 |
|      |                                                                                                   |   |
|      | Hydrograph No. 1, NRCS Runoff, EX-01SW  Tc by TR55 Worksheet                                      | 4 |
|      | Tc by TR55 Worksheet  Hydrograph No. 2, NRCS Runoff, EX-02E                                       | 5 |
|      | 11111111111111111111111111111111111111                                                            |   |
|      | Tc by TR55 Worksheet  Hydrograph No. 3, NRCS Runoff, EX-03S                                       | 7 |
|      | Tc by TR55 Worksheet                                                                              | 8 |
|      | Tc by TR55 Worksheet  Hydrograph No. 4, Junction, EX-SITE  Hydrograph No. 5, NRCS Runoff, PR-01SW | 9 |
|      | Hydrograph No. 5, NRCS Runoff, PR-01SW                                                            | ) |
|      |                                                                                                   |   |
|      | Hydrograph No. 6, NRCS Runoff, PR-02E  Tc by TR55 Worksheet 13                                    | : |
|      |                                                                                                   |   |
|      | Hydrograph No. 7, NRCS Runoff, PR-03S                                                             |   |
|      |                                                                                                   |   |
|      |                                                                                                   |   |
|      | Hydrograph No. 9, Pond Route, PR-01SW DET  Detention Pond Reports - PR-01 DETENTION  18           |   |
|      |                                                                                                   |   |
|      | Hydrograph No. 10, Junction, PR-SITE-DET                                                          |   |
|      | Design Storm Report - NOAA-D, 24-hr                                                               |   |
| · Ye |                                                                                                   |   |
|      | Hydrograph Summary                                                                                |   |
|      | lydrograph Reports 25                                                                             |   |
|      | Hydrograph No. 1, NRCS Runoff, EX-01SW  Hydrograph No. 2, NRCS Runoff, EX-02E                     |   |
|      |                                                                                                   |   |
|      | Hydrograph No. 3, NRCS Runoff, EX-03S  Hydrograph No. 4, Junction, EX-SITE                        |   |
|      | Hydrograph No. 4, Junction, EX-SITE  Hydrograph No. 5, NRCS Runoff, PR-01SW  28                   |   |
|      |                                                                                                   |   |
|      | Hydrograph No. 6, NRCS Runoff, PR-02E                                                             |   |
|      | Hydrograph No. 7, NRCS Runoff, PR-03S                                                             |   |
|      | Hydrograph No. 8, Junction, PR-SITE 32  Hydrograph No. 9, Pond Route, PR-01SW DET 33              |   |
|      | Hydrograph No. 9, Pond Route, PR-01SW DET  Hydrograph No. 10, Junction, PR-SITE-DET               |   |
|      | Hydrograph No. 10, Junction, PR-SITE-DET 35                                                       |   |
|      | 35                                                                                                |   |

## Contents continued...

| Design Storm Report - NOAA-D, 24-hr                                                                                | 36                                       |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Design Storm Report - NOAA-D, 24-nr                                                                                |                                          |
| 5 - Year  Hydrograph Summary                                                                                       | 37                                       |
|                                                                                                                    |                                          |
| Hydrograph Reports  Hydrograph No. 1, NRCS Runoff, EX-01SW                                                         | 38                                       |
| Hydrograph No. 1, NRCS Runoff, EX-015W  Hydrograph No. 2, NRCS Runoff, EX-02E                                      | 39                                       |
| Hydrograph No. 2, NRCS Runoff, EX-02E  Hydrograph No. 3, NRCS Runoff, EX-03S                                       | 40                                       |
|                                                                                                                    |                                          |
|                                                                                                                    |                                          |
| Hydrograph No. 5, NRCS Runoff, PR-01SW  Hydrograph No. 6, NRCS Runoff, PR-02E                                      | . 43                                     |
| Hydrograph No. 6, NRCS Runoff, PR-02E  Hydrograph No. 7, NRCS Runoff, PR-03S                                       | . 44                                     |
| Hydrograph No. 7, NRCS Runoff, PR-03S                                                                              | 45                                       |
| Hydrograph No. 7, NRCS Rulion, FR 666                                                                              | 46                                       |
| Hydrograph No. 8, Junction, PR-SHE  Hydrograph No. 9, Pond Route, PR-01SW DET  ——————————————————————————————————— | 47                                       |
| OITE DET                                                                                                           |                                          |
| Hydrograph No. 10, Junction, PR-STE-DET                                                                            |                                          |
| 10 - Year                                                                                                          | 49                                       |
| 10 - Year  Hydrograph Summary                                                                                      |                                          |
| Hydrograph Reports                                                                                                 | 50                                       |
| Hydrograph Reports  Hydrograph No. 1, NRCS Runoff, EX-01SW                                                         | 51                                       |
|                                                                                                                    |                                          |
|                                                                                                                    |                                          |
|                                                                                                                    |                                          |
| - NDOC Dunoff PR-01SW                                                                                              |                                          |
| a NDCC Bunoff PR-02F                                                                                               |                                          |
| # PD 000                                                                                                           |                                          |
|                                                                                                                    |                                          |
| Double DP 01SW I) E I                                                                                              |                                          |
| OITE DEL                                                                                                           |                                          |
| Hydrograph No. 10, Junction, PR-STE-DET                                                                            |                                          |
|                                                                                                                    |                                          |
| 25 - Year  Hydrograph Summary                                                                                      |                                          |
|                                                                                                                    |                                          |
| - C - C 04C/M                                                                                                      | 63                                       |
|                                                                                                                    |                                          |
|                                                                                                                    |                                          |
| Hydrograph No. 3, NRCS Runoff, EX-03S  Hydrograph No. 4, Junction, EX-SITE                                         | en e |
|                                                                                                                    |                                          |

## Contents continued...


| Hydrograph No. 5, NRCS Runoff, PR-01SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| Hydrograph No. 5, NRCS Runoff, PR-01SW  Hydrograph No. 6, NRCS Runoff, PR-02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 66   |
| Hydrograph No. 7, NRCS Runoff, PR-03S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 67   |
| Hydrograph No. 8, Junction, PR-SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ************ | 68   |
| Hydrograph No. 9, Pond Route, PR-01SW DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 69   |
| Hydrograph No. 9, Pond Route, PR-01SW DET  Hydrograph No. 10, Junction, PR-SITE-DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 70   |
| Hydrograph No. 10, Junction, PR-SITE-DET  Design Storm Report - NOAA-D, 24-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 71   |
| 50 - Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 72   |
| Harata and the second s |              |      |
| Hydrograph Summary Hydrograph Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 73   |
| Hydrograph No. 1, NRCS Runoff, EX-01SW  Hydrograph No. 2, NRCS Runoff, EX-02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |      |
| Hydrograph No. 2, NRCS Runoff, EX-02E  Hydrograph No. 3, NRCS Runoff, EX-03S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | . 74 |
| Hydrograph No. 3, NRCS Runoff, EX-03S  Hydrograph No. 4, Junction, EX-SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***********  | . 75 |
| Hydrograph No. 4, Junction, EX-SITE  Hydrograph No. 5, NRCS Runoff, PR-01SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | . 76 |
| Hydrograph No. 5, NRCS Runoff, PR-01SW  Hydrograph No. 6, NRCS Runoff, PR-02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | , 77 |
| Hydrograph No. 6, NRCS Runoff, PR-02E  Hydrograph No. 7, NRCS Runoff, PR-03S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 78   |
| Hydrograph No. 7, NRCS Runoff, PR-03S  Hydrograph No. 8, Junction, PR-SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 79   |
| Hydrograph No. 8, Junction, PR-SITE  Hydrograph No. 9, Pond Route, PR-01SW DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 80   |
| Hydrograph No. 9, Pond Route, PR-01SW DET  Hydrograph No. 10, Junction, PR-SITE-DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 81   |
| Hydrograph No. 10, Junction, PR-SITE-DET  Design Storm Report - NOAA-D, 24-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 82   |
| Design Storm Report - NOAA-D, 24-hr 100 - Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *********    | 83   |
| Undergreen and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |      |
| Hydrograph Summary Hydrograph Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 85   |
| Hydrograph No. 1, NRCS Runoff, EX-01SW  Hydrograph No. 2, NRCS Runoff, EX-02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |      |
| Hydrograph No. 2, NRCS Runoff, EX-02E  Hydrograph No. 3, NRCS Runoff, EX-03S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8            | 36   |
| Hydrograph No. 3, NRCS Runoff, EX-03S  Hydrograph No. 4, Junction, EX-SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8            | 37   |
| Hydrograph No. 4, Junction, EX-SITE  Hydrograph No. 5, NRCS Runoff, PR-01SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8            | 18   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8            | 9    |
| Hydrograph No. 6, NRCS Runoff, PR-02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90           | 0    |
| Hydrograph No. 7, NRCS Runoff, PR-02E  Hydrograph No. 8, Junction, PR-SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91           | 1    |
| Hydrograph No. 8, Junction, PR-SITE  Hydrograph No. 9, Pond Route, PR-01SW DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92           | 2    |
| Hydrograph No. 9, Pond Route, PR-01SW DET  Hydrograph No. 10, Junction, PR-SITE-DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93           | }    |
| Hydrograph No. 10, Junction, PR-SITE-DET  Design Storm Report - NOAA-D, 24-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94           | 1    |
| Design Storm Report - NOAA-D, 24-hr IDF Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95           |      |
| IDF Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97           |      |

# Contents continued...

|                      | 98 |
|----------------------|----|
| Precipitation Report |    |

## Basin Model

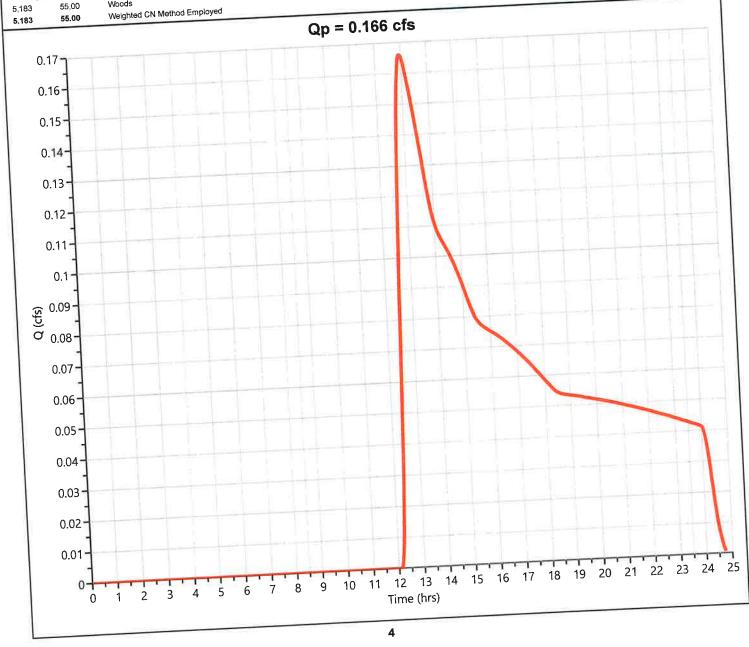
Hydrology Studio v 3.0.0.38



# Hydrograph by Return Period

File: 20250924PARKERS PLACE Hydrology.hys 10-06-2025

|            | udio v 3.0.0.38    |                         |       |       |      | Peak Outf | low (cfs) |       |       |        |
|------------|--------------------|-------------------------|-------|-------|------|-----------|-----------|-------|-------|--------|
| yd.<br>lo. | Hydrograph<br>Type | Hydrograph<br>Name      | 1-yr  | 2-yr  | 3-уг | 5-yr      | 10-yr     | 25-уг | 50-yr | 100-yr |
| -          |                    | EX-01SW                 | 0.166 | 0.517 |      | 1.598     | 2.863     | 4.907 | 6.603 | 8.545  |
| 1          | NRCS Runoff        | EX-02E                  | 0.046 | 0.157 |      | 0.520     | 0.942     | 1.603 | 2.154 | 2.784  |
| 2          | NRCS Runoff        | EX-03S                  | 0.013 | 0.048 |      | 0.166     | 0.299     | 0.508 | 0.681 | 0.879  |
| 3          | NRCS Runoff        | EX-SITE                 | 0.223 | 0.692 |      | 2.191     | 3.958     | 6.756 | 9.080 | 11.74  |
| 4          | Junction           | PR-01SW                 | 2.371 | 3.680 |      | 6.083     | 8.268     | 11.37 | 13.77 | 16.38  |
| 5          | NRCS Runoff        | PR-02E                  | 0.027 | 0.090 |      | 0.285     | 0.495     | 0.825 | 1.095 | 1.403  |
| 6          | NRCS Runoff        |                         | 0.150 | 0.260 |      | 0.472     | 0.670     | 0.958 | 1.183 | 1.432  |
| 7          | NRCS Runoff        | PR-03S                  | 2.542 | 4.015 |      | 6.762     | 9.275     | 12.88 | 15.67 | 18.74  |
| 8          | Junction           | PR-SITE                 | 0.000 | 0.184 |      | 0.809     | 1.346     | 3.636 | 5.198 | 8.316  |
| 9          | Pond Route         | PR-01SW DET PR-SITE-DET | 0.172 | 0.351 |      | 0.921     | 1.550     | 4.085 | 5.816 | 9.147  |
|            |                    |                         |       |       |      |           |           |       |       |        |


| NRCS Runoff   EX-015W   0.166   12.93   3.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hyd.<br>No. | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow | Time to<br>Peak | Hydrograph<br>Volume | Inflow<br>Hyd(s) | 0924PARKERS PL | 10-06   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--------------------|--------------|-----------------|----------------------|------------------|----------------|---------|
| 2       NRCS Runoff       EX-02E       0.046       12.70       823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           | NRCS Runoff        | EX-01SW            |              |                 | (cuft)               | riyu(s)          | (ft)           | Storage |
| 3         NRCS Runoff         EX-03S         0.013         12.63         238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2           | NRCS Runoff        | EX-02E             |              |                 | 3,061                |                  |                | 1       |
| 4       Junction       EX-SITE       0.013       12.63       238         5       NRCS Runoff       PR-01SW       2.371       12.43       16,019         6       NRCS Runoff       PR-02E       0.027       12.55       413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3           | NRCS Runoff        | EX-03S             |              |                 | 823                  |                  |                |         |
| 5     NRCS Runoff     PR-01SW     2.371     12.92     4,121     1,2,3       6     NRCS Runoff     PR-02E     0.027     12.55     413     —       7     NRCS Runoff     PR-03S     0.150     12.37     1,003     —       8     Junction     PR-SITE     2.542     12.43     17,434     5,6,7       9     Pond Route     PR-01SW DET     0.000     11.93     0.000     5     27.89     14,012       10     Junction     PR-SITE-DET     0.172     12.43     1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4           | Junction           | 1                  |              |                 | 238                  | 2000             |                | 1       |
| 6     NRCS Runoff     PR-02E     2.371     12.43     16,019     —       7     NRCS Runoff     PR-03S     0.027     12.55     413     —       8     Junction     PR-SITE     2.542     12.43     1,003     —       9     Pond Route     PR-01SW DET     0.000     11.93     0.000     5     27.89     14,012       10     Junction     PR-SITE-DET     0.172     12.43     1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5           | NRCS Runoff        |                    |              | 12.92           | 4,121                | 1, 2, 3          |                |         |
| 7 NRCS Runoff PR-03S 0.027 12.55 413 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6           | NRCS Runoff        | 1                  |              | 12.43           | 16,019               |                  |                |         |
| 8 Junction PR-SITE 2.542 12.43 17,434 5, 6, 7  10 Junction PR-SITE-DET 0.172 12.43 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.0 | 7           |                    |                    |              | 12.55           | 413                  |                  |                |         |
| 9 Pond Route PR-01SW DET 0.000 11.93 0.000 5 27.89 14,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8           |                    |                    | 0.150        | 12.37           | 1,003                |                  |                |         |
| 10 Junction PR-SITE-DET 0.000 11.93 0.000 5 27.89 14,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9           |                    |                    | 2.542        | 12.43           | 17,434               |                  |                | V.      |
| PR-SITE-DET 0.172 12.42 14.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10          |                    |                    | 0.000        | 11.93           | 0.000                |                  | 27.00          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .           | Junction           | PR-SITE-DET        | 0.172        | 12.42           |                      |                  | 27.89          | 14,012  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    |                    |              |                 |                      |                  |                |         |

### Hyd. No. 1 EX-01SW

| .X-01011        |                        |                    | - 100 5      |
|-----------------|------------------------|--------------------|--------------|
|                 |                        | Peak Flow          | = 0.166 cfs  |
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.93 hrs  |
| Storm Frequency | = 1-yr                 | Runoff Volume      | = 3,061 cuft |
| Time Interval   | = 1 min                | Curve Number       | = 55.00*     |
| Drainage Area   | = 5.183 ac             | Time of Conc. (Tc) | = 31.45 min  |
| Tc Method       | = TR55 (See Worksheet) | Design Storm       | = NOAA-D     |
| Total Rainfall  | = 2.87 in              | Shape Factor       | = 484        |
| Storm Duration  | = 24 hrs               | Cp                 |              |

### \* Composite CN Worksheet

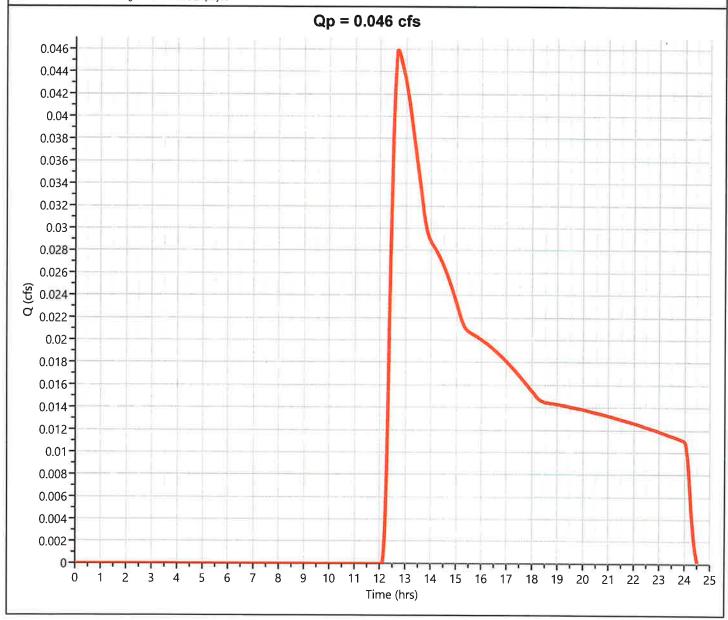
DESCRIPTION AREA (ac) CN Woods 55.00



10-06-2025

### EX-01SW NRCS Runoff

| Description                  |        | Segments |       |          |
|------------------------------|--------|----------|-------|----------|
| Description                  | A      | В        | C     | Tc (min) |
|                              |        |          |       |          |
| Sheet Flow                   |        |          |       |          |
| Description                  | Woods  | Woods    |       |          |
| Manning's n                  | 0.400  | 0.400    | 0.013 |          |
| Flow Length (ft)             | 100    | 50       |       |          |
| 2-yr, 24-hr Precip. (in)     | 3.44   | 3.44     | 3.44  |          |
| Land Slope (%)               | 18     | 12       |       |          |
| Travel Time (min)            | 8.60   | 5.81     | 0.00  | 14.41    |
| Shallow Concentrated Flow    |        |          |       |          |
| Flow Length (ft)             | 630    |          |       |          |
| Watercourse Slope (%)        | 6.00   | 0.00     | 0.00  |          |
| Surface Description          | Forest | Paved    | Paved |          |
| Average Velocity (ft/s)      | .62    |          |       |          |
| Travel Time (min)            | 17.04  | 0.00     | 0.00  | 17.04    |
| Channel Flow                 |        |          |       |          |
| X-sectional Flow Area (sqft) |        |          |       |          |
| Wetted Perimeter (ft)        |        |          |       |          |
| Channel Slope (%)            |        |          |       |          |
| Manning's n                  | 0.013  | 0.013    | 0.013 |          |
| Velocity (ft/s)              |        |          |       |          |
| Flow Length (ft)             |        |          |       |          |
| Travel Time (min)            | 0.00   | 0.00     | 0.00  | 0.00     |
| Total Travel Time            |        |          |       | 31.45 mi |


#### **EX-02E** Hyd. No. 2

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.046 cfs |
|-----------------|------------------------|--------------------|-------------|
| Storm Frequency | = 1-yr                 | Time to Peak       | = 12.70 hrs |
| Time Interval   | = 1 min                | Runoff Volume      | = 823 cuft  |
| Drainage Area   | = 1.389 ac             | Curve Number       | = 55.00*    |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 20.61 min |
| Total Rainfall  | = 2.87 in              | Design Storm       | = NOAA-D    |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484       |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 1,389 55,00 Woods

1.389 55.00 Weighted CN Method Employed



10-06-2025

### EX-02E NRCS Runoff

| Description                  |        | Segments |       |           |
|------------------------------|--------|----------|-------|-----------|
|                              | A      | В        | С     | To feet   |
|                              |        |          |       | Tc (min   |
| Sheet Flow                   |        |          |       |           |
| Description                  | Woods  | Woods    |       |           |
| Manning's n                  | 0.400  | 0.400    | 0.040 |           |
| Flow Length (ft)             | 100    | 50       | 0.013 |           |
| 2-yr, 24-hr Precip. (in)     | 3.44   | 3.44     |       |           |
| Land Slope (%)               | 12     | 12       | 3.44  |           |
| Travel Time (min)            | 10.11  | 5.81     | 0.00  | 15.92     |
| Shallow Concentrated Flow    |        |          |       |           |
| Flow Length (ft)             | 100    |          |       |           |
| Watercourse Slope (%)        | 2.00   |          |       |           |
| Surface Description          |        | 0.00     | 0.00  |           |
| Average Velocity (ft/s)      | Forest | Paved    | Paved |           |
| (lus)                        | .36    |          |       |           |
| Travel Time (min)            | 4.68   | 0.00     | 0.00  | 4.68      |
| Channel Flow                 |        |          |       |           |
| X-sectional Flow Area (sqft) |        |          |       |           |
| Wetted Perimeter (ft)        |        |          |       |           |
| Channel Slope (%)            |        |          |       |           |
| Manning's n                  | 0.040  |          |       |           |
| Velocity (ft/s)              | 0.013  | 0.013    | 0.013 |           |
| Flow Length (ft)             |        |          |       |           |
| Travel Time (min)            | 0.00   | 0.00     | 0.00  | 0.00      |
| Total Travel Time            |        |          |       | 0.00      |
| .our Havel Inne              |        |          |       | 20.61 min |

### Hyd. No. 3 **EX-03S**

|                 |                        | Peak Flow          | = 0.013 cfs |
|-----------------|------------------------|--------------------|-------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.63 hrs |
| Storm Frequency | = 1-yr                 | Runoff Volume      | = 238 cuft  |
| Time Interval   | = 1 min                | Curve Number       | = 55.00*    |
| Drainage Area   | = 0.41 ac              | Time of Conc. (Tc) | = 18.32 min |
| Tc Method       | = TR55 (See Worksheet) | Design Storm       | = NOAA-D    |
| Total Rainfall  | = 2.87 in              | Shape Factor       | = 484       |
| Storm Duration  | = 24 hrs               | Griape i deter     |             |

#### \* Composite CN Worksheet

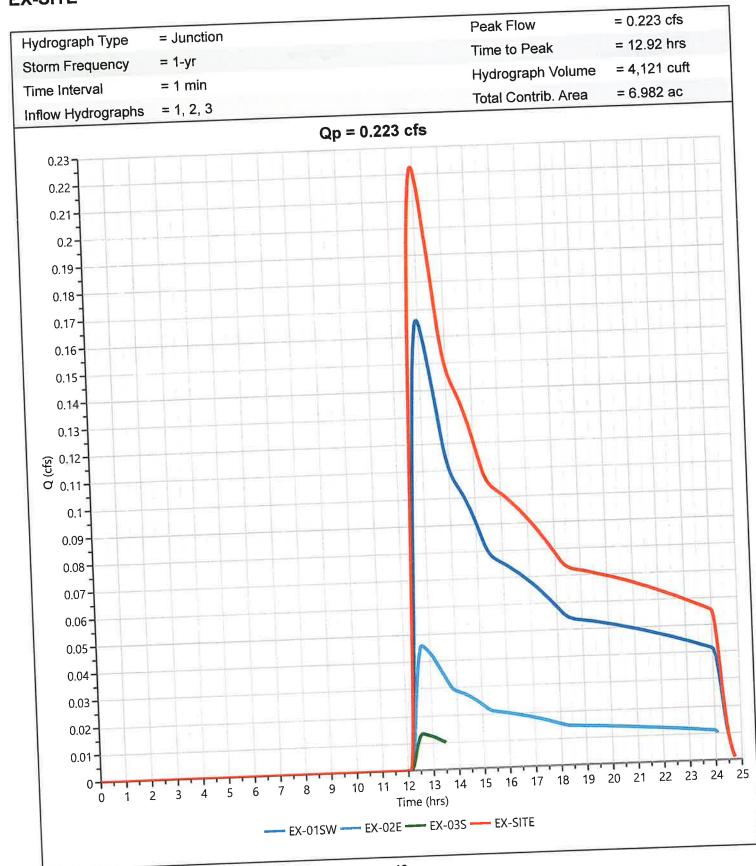
0.002

0.001

DESCRIPTION AREA (ac) CN 55.00 Woods

Weighted CN Method Employed 0.41 55.00 Qp = 0.013 cfs0.014-0.013 0.012-0.011 0.01 0.009 0.008 (\$\frac{5}{0}\) 0.007 0.006 0.005 0.004 0.003

Time (hrs)

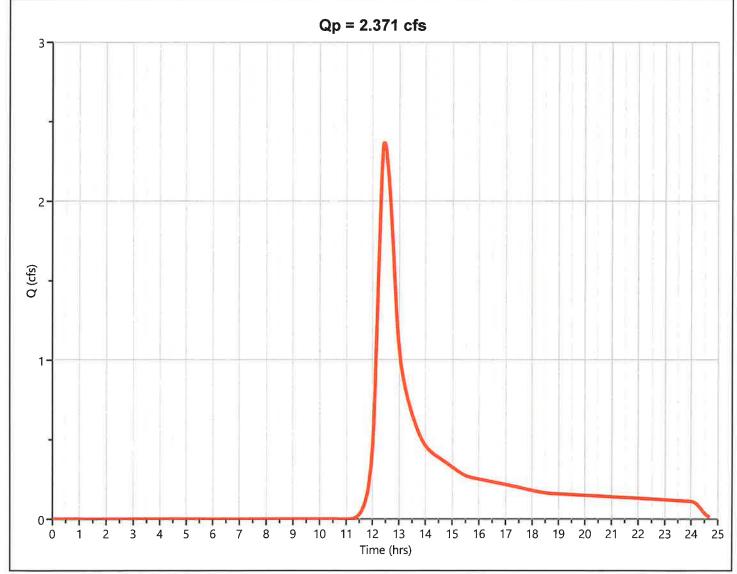

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

10-06-2025

### EX-03S NRCS Runoff

|        | Segments                                       |                                                                                     |                                                                                                                                                                                                                                                                              |
|--------|------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A      | В                                              | C                                                                                   | Tc (min                                                                                                                                                                                                                                                                      |
|        |                                                |                                                                                     | 10 (11111)                                                                                                                                                                                                                                                                   |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
| Woods  | Woods                                          |                                                                                     |                                                                                                                                                                                                                                                                              |
| 0.400  | 0.400                                          | 0.013                                                                               |                                                                                                                                                                                                                                                                              |
| 100    | 20                                             | 0.010                                                                               |                                                                                                                                                                                                                                                                              |
| 3.44   | 3.44                                           | 2 44                                                                                |                                                                                                                                                                                                                                                                              |
| 5      | 5                                              | 3.44                                                                                |                                                                                                                                                                                                                                                                              |
| 14.36  | 3.96                                           | 0.00                                                                                | 18.32                                                                                                                                                                                                                                                                        |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
| 0.00   |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
|        |                                                | 0.00                                                                                |                                                                                                                                                                                                                                                                              |
| i aved | Paved                                          | Paved                                                                               |                                                                                                                                                                                                                                                                              |
| 0.00   | 0.00                                           | 0.00                                                                                | 0.00                                                                                                                                                                                                                                                                         |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
| 0.013  | 0.045                                          |                                                                                     |                                                                                                                                                                                                                                                                              |
| 0.010  | 0.013                                          | 0.013                                                                               |                                                                                                                                                                                                                                                                              |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
| 0.00   | 0.00                                           | 0.00                                                                                | 0.00                                                                                                                                                                                                                                                                         |
|        |                                                |                                                                                     |                                                                                                                                                                                                                                                                              |
|        | Woods 0.400 100 3.44 5 14.36  0.00 Paved  0.00 | Woods 0.400 0.400 100 20 3.44 3.44 5 5 14.36 3.96  0.00 Paved Paved  0.00 0.00 0.00 | Woods     Woods       0.400     0.400     0.013       100     20     3.44     3.44       5     5       14.36     3.96     0.00       0.00     0.00     0.00       Paved     Paved       0.00     0.00     0.00       0.013     0.013     0.013       0.00     0.00     0.003 |

### **EX-SITE**




PR-01SW Hyd. No. 5

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 2.371 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 1-yr                 | Time to Peak       | = 12.43 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 16,019 cuft |
| Drainage Area   | = 5.852 ac             | Curve Number       | = 72.48*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 34.6 min    |
| Total Rainfall  | = 2.87 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |

#### \* Composite CN Worksheet

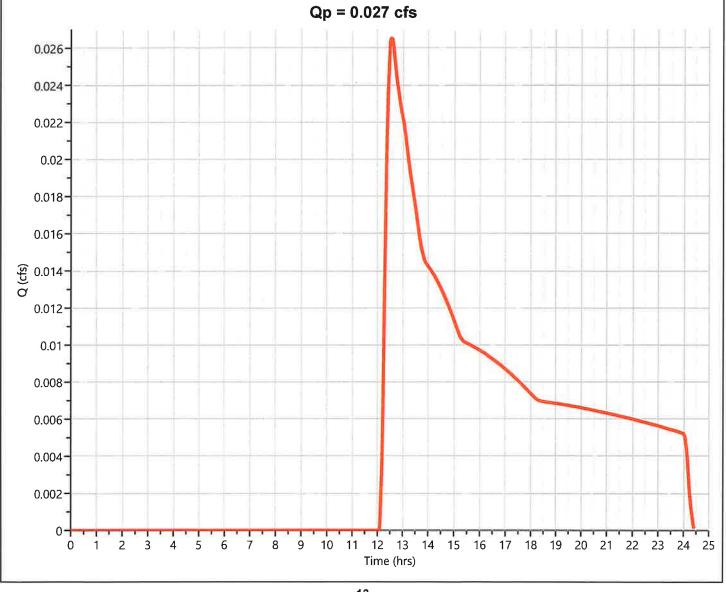
| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 2.095     | 98.00 | Impervious                  |
| 1.395     | 61.00 | Landscape                   |
| 1.277     | 58.00 | Conservation                |
| 1.085     | 55.00 | Woods                       |
| 5.852     | 72.48 | Weighted CN Method Employed |



10-06-2025

### PR-01SW NRCS Runoff

| Description                  |               | Segments        |              |          |
|------------------------------|---------------|-----------------|--------------|----------|
| Description                  | ay domes A    | В               | C -          | Tc (min) |
|                              | The same wife | Survey of Carlo | 1498,884 ::  |          |
| Sheet Flow                   |               |                 |              |          |
| Description                  | Woods         | Woods           | Conservation |          |
| Manning's n                  | 0.400         | 0.400           | 0.400        |          |
| Flow Length (ft)             | 100           | 25              | 25           |          |
| 2-yr, 24-hr Precip. (in)     | 3.44          | 3.44            | 3.44         |          |
| Land Slope (%)               | 18            | 12              | 33           |          |
| Travel Time (min)            | 8.60          | 3.34            | 2.23         | 14.16    |
| Shallow Concentrated Flow    |               |                 |              |          |
| Flow Length (ft)             | 690           |                 |              |          |
| Watercourse Slope (%)        | 5.00          | 0.00            | 0.00         |          |
| Surface Description          | Forest        | Paved           | Paved        |          |
| Average Velocity (ft/s)      | .56           |                 |              |          |
| Travel Time (min)            | 20.44         | 0.00            | 0.00         | 20.44    |
| Channel Flow                 |               |                 |              |          |
| X-sectional Flow Area (sqft) |               |                 |              |          |
| Wetted Perimeter (ft)        |               |                 |              |          |
| Channel Slope (%)            |               |                 |              |          |
| Manning's n                  | 0.013         | 0.013           | 0.013        |          |
| Velocity (ft/s)              |               |                 |              |          |
| Flow Length (ft)             |               |                 |              |          |
| Travel Time (min)            | 0.00          | 0.00            | 0.00         | 0.00     |
| Total Travel Time            |               |                 |              | 34.6 mir |


PR-02E Hyd. No. 6

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.027 cfs |
|-----------------|------------------------|--------------------|-------------|
| Storm Frequency | = 1-yr                 | Time to Peak       | = 12.55 hrs |
| Time Interval   | = 1 min                | Runoff Volume      | = 413 cuft  |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*    |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min |
| Total Rainfall  | = 2.87 in              | Design Storm       | = NOAA-D    |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484       |

#### \* Composite CN Worksheet

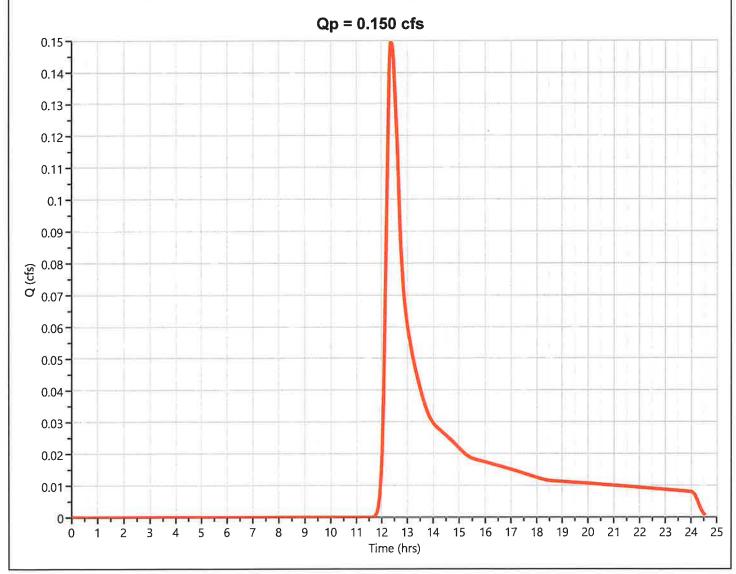
| AREA (ac) | CN    | DESCRIPTION  |
|-----------|-------|--------------|
| 0.016     | 61.00 | Landscape    |
| 0.171     | 58,00 | Conservation |
| 0.44      | 55.00 | Woods        |

0.627 55.97 Weighted CN Method Employed



10-06-2025

### PR-02E NRCS Runoff


| Description                  |             | Segments |                    |           |
|------------------------------|-------------|----------|--------------------|-----------|
| Description                  | A Punellips | В        | ALL C              | Tc (min)  |
|                              |             |          |                    |           |
| Sheet Flow                   | to smill    | Oak Sh   | Company of Control |           |
| Description                  | Woods       | Woods    |                    |           |
| Manning's n                  | 0.400       | 0.400    | 0.013              |           |
| Flow Length (ft)             | 100         | 50       |                    |           |
| 2-yr, 24-hr Precip. (in)     | 3.44        | 3.44     | 3.44               |           |
| Land Slope (%)               | 12          | 12       |                    |           |
| Travel Time (min)            | 10.11       | 5.81     | 0.00               | 15.92     |
| Shallow Concentrated Flow    |             |          |                    |           |
| Flow Length (ft)             | 50          |          |                    |           |
| Watercourse Slope (%)        | 2.00        | 0.00     | 0.00               |           |
| Surface Description          | Forest      | Paved    | Paved              |           |
| Average Velocity (ft/s)      | .36         |          |                    |           |
| Travel Time (min)            | 2.34        | 0.00     | 0.00               | 2.34      |
| Channel Flow                 |             |          |                    |           |
| X-sectional Flow Area (sqft) |             |          |                    |           |
| Wetted Perimeter (ft)        |             |          |                    |           |
| Channel Slope (%)            |             |          |                    |           |
| Manning's n                  | 0.013       | 0.013    | 0.013              |           |
| Velocity (ft/s)              |             |          |                    |           |
| Flow Length (ft)             |             |          |                    |           |
| Travel Time (min)            | 0.00        | 0.00     | 0.00               | 0.00      |
| Total Travel Time            |             |          |                    | 18.27 mir |

PR-03S Hyd. No. 7

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.150 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 1-yr                 | Time to Peak       | = 12.37 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 1,003 cuft |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Total Rainfall  | = 2.87 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

#### \* Composite CN Worksheet

| AREA (ac) | CN    | DESCRIPTION            |
|-----------|-------|------------------------|
| 0.12      | 98.00 | Impervious             |
| 0.122     | 61.00 | Landscape              |
| 0.147     | 58.00 | Conservation           |
| 0.115     | 55.00 | Woods                  |
| 0.504     | 67 57 | Weighted CN Method Emp |



10-06-2025

### PR-03S NRCS Runoff

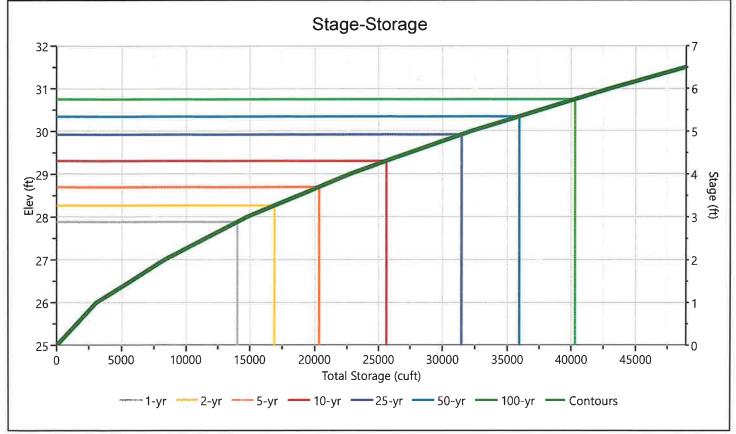
| Description                  |              | Segments          |       |          |
|------------------------------|--------------|-------------------|-------|----------|
|                              | A Physical A | В                 | C     | Tc (min) |
|                              |              |                   |       |          |
| Sheet Flow                   | Time of      | 6 material (349.) |       |          |
| Description                  | Landscape    | Conservation      | Woods |          |
| Manning's n                  | 0.240        | 0.400             | 0.400 |          |
| Flow Length (ft)             | 40           | 40                | 70    |          |
| 2-yr, 24-hr Precip. (in)     | 3.44         | 3.44              | 3.44  |          |
| Land Slope (%)               | 3            | 4                 | 3     |          |
| Travel Time (min)            | 5.62         | 7.54              | 13.24 | 26.40    |
| Shallow Concentrated Flow    |              |                   |       |          |
| Flow Length (ft)             |              |                   |       |          |
| Watercourse Slope (%)        | 0.00         | 0.00              | 0.00  |          |
| Surface Description          | Paved        | Paved             | Paved |          |
| Average Velocity (ft/s)      |              |                   |       |          |
| Travel Time (min)            | 0.00         | 0.00              | 0.00  | 0.00     |
| Channel Flow                 |              |                   |       |          |
| X-sectional Flow Area (sqft) |              |                   |       |          |
| Wetted Perimeter (ft)        |              |                   |       |          |
| Channel Slope (%)            |              |                   |       |          |
| Manning's n                  | 0.013        | 0.013             | 0.013 |          |
| Velocity (ft/s)              |              |                   |       |          |
| Flow Length (ft)             |              |                   |       |          |
| Travel Time (min)            | 0.00         | 0.00              | 0.00  | 0.00     |
| Total Travel Time            |              |                   |       | 26.4 min |

PR-SITE Hyd. No. 8

| -lydrograph Type  | = Junction       |                     | Peak Flow                               | = 2.542 cfs   |
|-------------------|------------------|---------------------|-----------------------------------------|---------------|
| Storm Frequency   | = 1-yr           |                     | Time to Peak                            | = 12.43 hrs   |
| Time Interval     | = 1 min          |                     | Hydrograph Volume                       | = 17,434 cuft |
| nflow Hydrographs | = 5, 6, 7        |                     | Total Contrib. Area                     | = 6.983 ac    |
|                   |                  | Qp = 2.542 cfs      |                                         |               |
| 37                |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
| 1                 |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
| 2-                |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
| (cr) 7            |                  |                     |                                         |               |
| 7                 |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
| 1                 |                  |                     |                                         |               |
|                   |                  | 11                  |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
|                   |                  |                     |                                         |               |
| 0 1 2 3           | 4 5 6 7 8        | 9 10 11 12 13 14 15 | 5 16 17 18 19 20                        | 21 22 23 24 2 |
| 0 1 2 3           | <b>4 5 6 7 6</b> | Time (hrs)          | , , , , , , , , , , , , , , , , , , , , |               |
|                   | PR-0             | 1SW                 | PR-SITE                                 |               |
|                   |                  |                     |                                         |               |

**PR-01SW DET** 

Hyd. No. 9

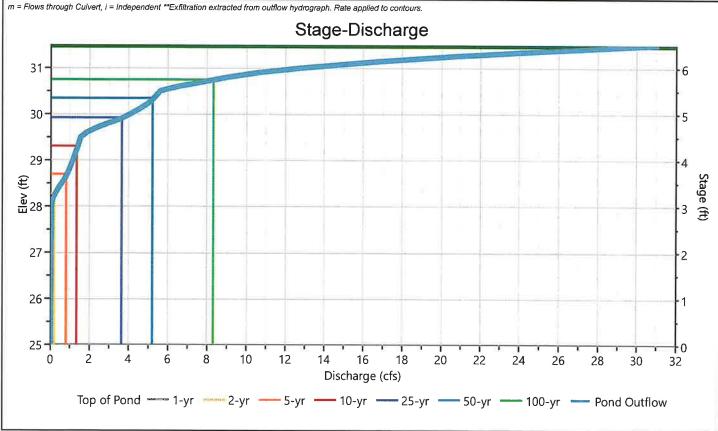

| lydrograph Type        | = Pond Route      | Peak Flow         | = 0.000 cfs                 |  |
|------------------------|-------------------|-------------------|-----------------------------|--|
| Storm Fréquency        | = 1-yr            | Time to Peak      | = 11.93 hrs                 |  |
| îme Interval           | = 1 min           | Hydrograph Volume | = 0.000 cuft                |  |
| nflow Hydrograph       | = 5 - PR-01SW     | Max. Elevation    | = 27.89 ft<br>= 14,012 cuft |  |
| ond Name               | = PR-01 DETENTION | Max. Storage      |                             |  |
| ond Routing by Storage | ndication Method  |                   | _                           |  |
|                        | Qp = 0.000 c      | fs                |                             |  |
| 3                      |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
| 1                      |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
| 2-                     |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
| a                      |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
| 1-                     |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
| -                      |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
|                        |                   |                   |                             |  |
| 0                      | <del></del>       |                   |                             |  |
| 0 1                    | 2 3 4 5 6         | 7 8 9 1           | 0 11                        |  |
|                        | Time (hrs)        |                   |                             |  |
|                        | — PR-01SW — PR-0  | ISW DET           |                             |  |

Hydrology Studio v 3.0.0.38 10-06-2025

#### **PR-01 DETENTION**

### Stage-Storage

| User Defined Contour | Stage / Storage Table |            |                   |                        |                         |                         |  |
|----------------------|-----------------------|------------|-------------------|------------------------|-------------------------|-------------------------|--|
| Description          | Input                 | Stage (ft) | Elevation<br>(ft) | Contour Area<br>(sqft) | Incr. Storage<br>(cuft) | Total Storage<br>(cuft) |  |
| Bottom Elevation, ft | 25.00                 |            |                   |                        |                         |                         |  |
| \\\-id= (0\)         | 100.00                | 0.00       | 25.00             | 1,780                  | 0.000                   | 0.000                   |  |
| Voids (%)            | 100.00                | 1.00       | 26.00             | 4,600                  | 3,080                   | 3,080                   |  |
| Volume Calc          | Conic                 | 2.00       | 27.00             | 5,790                  | 5,183                   | 8,263                   |  |
|                      |                       | 3.00       | 28.00             | 7,200                  | 6,482                   | 14,745                  |  |
|                      |                       | 4.00       | 29.00             | 8,740                  | 7,957                   | 22,702                  |  |
|                      |                       | 5.00       | 30.00             | 10,250                 | 9,484                   | 32,186                  |  |
|                      |                       | 6.00       | 31.00             | 11,480                 | 10,858                  | 43,044                  |  |
|                      |                       | 6.50       | 31.50             | 12,140                 | 5,904                   | 48,947                  |  |
|                      |                       |            |                   |                        |                         |                         |  |




Hydrology Studio v 3.0.0.38 10-06-2025

#### **PR-01 DETENTION**

#### Stage-Discharge

| Culvert / Orifices      | Cir Culusum |               | Orifice | O-ifi a F |                         |        |
|-------------------------|-------------|---------------|---------|-----------|-------------------------|--------|
| Culvert / Offices       | Cir Culvert | 1 (m)         | 2 3 (m) |           | Orifice Plate           |        |
| Rise, in                | 15          | 8             | 9       | 4         | Orifice Dia, in         |        |
| Span, in                | 15          | 8             | 9       | 36        | No. Orifices            |        |
| No. Barrels             | 1           | 1             | 2       | 1         | Invert Elevation, ft    |        |
| Invert Elevation, ft    | 28.00       | 28.00         | 28.75   | 29.50     | Height, ft              |        |
| Orifice Coefficient, Co | 0.60        | 0.60          | 0.60    | 0.60      | Orifice Coefficient, Co |        |
| Length, ft              | 25          |               |         |           |                         |        |
| Barrel Slope, %         | .5          |               |         |           |                         |        |
| N-Value, n              | 0.013       |               |         |           | T I THE STATE           |        |
| Weirs                   | Riser       |               | Weir    |           | Ancillone               |        |
| VVCII 5                 | Riser       | 1 (i)         | 2       | 3         | Ancillary               |        |
| Shape / Type            | Box         | Broad Crested |         |           | Exfiltration, in/hr     | 0.30** |
| Crest Elevation, ft     | 30.5        | 30.75         |         |           |                         |        |
| Crest Length, ft        | 14          | 8             |         |           |                         |        |
| Angle, deg              |             | 18.4 (3:1)    |         |           | TO SECTION AND          |        |
| Weir Coefficient, Cw    | 3.3         | 3.3           |         |           | The same of the same    |        |

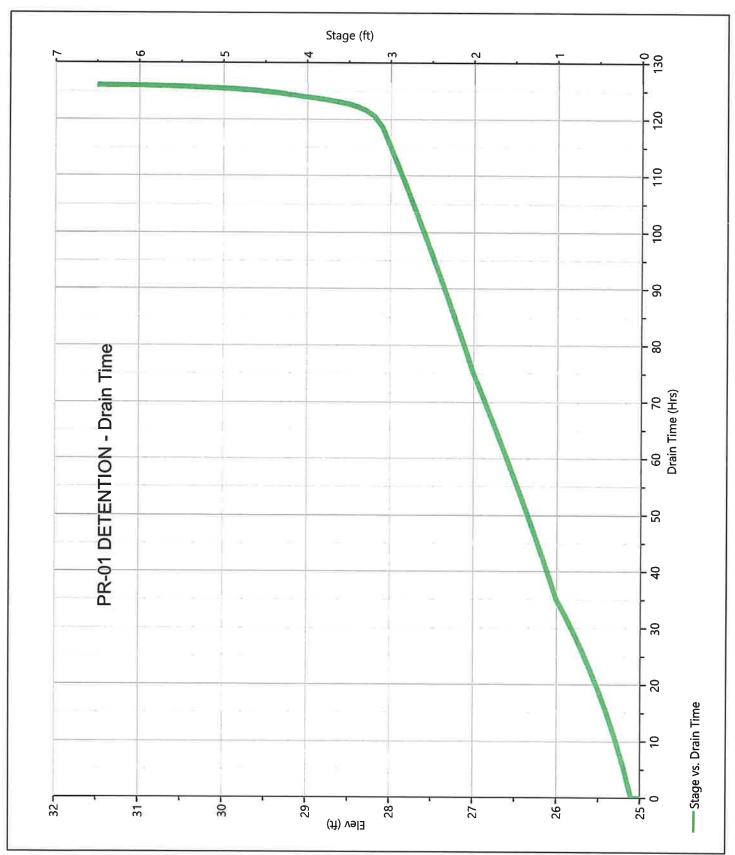


Hydrology Studio v 3.0.0.38

10-06-2025

#### **PR-01 DETENTION**

# **Stage-Storage-Discharge Summary**


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ser Total | User  | Exfil | Pf Riser |   | Weirs, cfs |       | Riser | s     | Orifices, cf | C     | Culvert  | Storage | Elev. | Stage |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|----------|---|------------|-------|-------|-------|--------------|-------|----------|---------|-------|-------|
| 1.00       26.00       3,080       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fs) (cfs) | (cfs) |       |          | 3 | 2          | 1     |       | 3     | 2            | 1     |          |         |       | (ft)  |
| 2.00       27.00       8,263       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.001       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000     |       | 0.000 |          |   |            | 0.000 | 0.000 | 0.000 | 0.000        | 0.000 | 0.000    | 0.000   | 25.00 | 0.00  |
| 3.00     28.00     14,745     0.000     0.000     0.000     0.000     0.000     0.000     0.000       4.00     29.00     22,702     1.094 oc     1.094     0.000     0.000     0.000     0.000     0.000       5.00     30.00     32,186     4.005 oc     1.225     0.000     2.780     0.000     0.000     0.000       6.00     31.00     43,044     9.105 ic     0.000     0.000     0.000     3.548     0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.032     |       | 0.032 |          |   |            | 0.000 | 0.000 | 0.000 | 0.000        | 0.000 | 0.000    | 3,080   | 26.00 | 1.00  |
| 4.00     29.00     22,702     1.094 oc     1.094     0.000     0.000     0.000     0.000     0.000       5.00     30.00     32,186     4.005 oc     1.225     0.000     2.780     0.000     0.000     0.000     0.071       6.00     31.00     43,044     9.105 ic     0.000     0.000     0.000     3.548     0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.040     |       | 0.040 |          |   |            | 0.000 | 0.000 | 0.000 | 0.000        | 0.000 | 0.000    | 8,263   | 27.00 | 2.00  |
| 5.00     30.00     32,186     4.005 oc     1.225     0.000     2.780     0.000     0.000     0.000       6.00     31.00     43,044     9.105 ic     0.000     0.000     0.000     3.548     0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050     |       | 0.050 |          |   |            | 0.000 | 0.000 | 0.000 | 0.000        | 0.000 | 0.000    | 14,745  | 28.00 | 3.00  |
| 6.00 31.00 43,044 9.105 ic 0.000 0.000 0.000 3.548 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.155     |       | 0.061 |          |   |            | 0.000 | 0.000 | 0.000 | 0.000        | 1.094 | 1.094 oc | 22,702  | 29.00 | 4.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.076     |       | 0.071 |          |   |            | 0.000 | 0.000 | 2.780 | 0.000        | 1.225 | 4.005 oc | 32,186  | 30.00 | 5.00  |
| 6.50 31.50 48,947 10.02 ic 0.000 0.000 0.000 21.01 0.000 0.084 0 0.084 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 12.73     |       | 0.080 |          |   |            | 3.548 | 0.000 | 0.000 | 0.000        | 0.000 | 9.105 ic | 43,044  | 31.00 | 6.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.11     |       | 0.084 |          |   |            | 21.01 | 0.000 | 0.000 | 0.000        | 0.000 | 10.02 ic | 48,947  | 31.50 | 6.50  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   | 0)         |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          | (       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |       |          |   |            |       |       |       |              |       |          |         |       |       |

Hydrology Studio v 3.0.0.38

10-06-2025

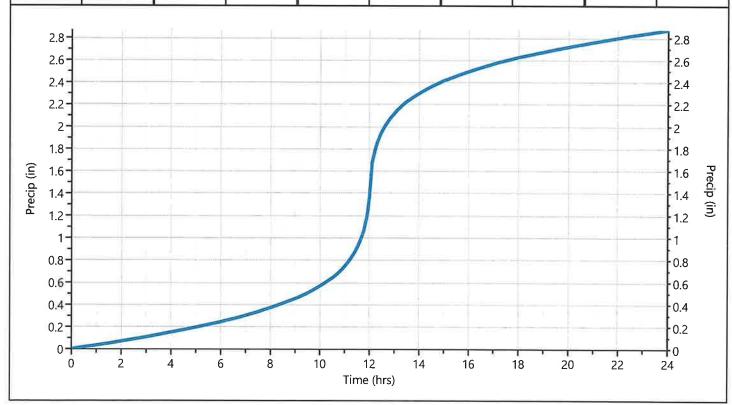
#### **PR-01 DETENTION**

#### **Pond Drawdown**



PR-SITE-DET Hyd. No. 10

| Hydrograph Type   | = Junction |     |         |            | Peal  | c Flow        | = 0.172 | cfs   |
|-------------------|------------|-----|---------|------------|-------|---------------|---------|-------|
| Storm Frequency   | = 1-уг     |     |         |            | Time  | to Peak       | = 12.42 | hrs   |
| Time Interval     | = 1 min    |     |         |            | Hydi  | ograph Volume | = 1,415 | cuft  |
| nflow Hydrographs | = 6, 7     |     |         |            | Tota  | Contrib. Area | = 1.131 | ac    |
|                   |            |     | Qp = 0  | .172 cfs   |       |               |         |       |
| 0.18              |            |     |         | 111        |       |               | IV U    |       |
| 0.17              |            |     |         | <b>1</b>   |       |               |         | Him   |
| 0.16              |            |     |         |            |       |               | 4-44    |       |
| 0.15              |            |     |         |            |       |               |         |       |
| -                 |            |     |         | A          |       |               |         | 1-11  |
| 0.14              |            |     |         |            |       |               |         | - 11  |
| 0.13              |            |     |         |            |       |               | 77      |       |
| 0.12              |            |     |         |            |       |               |         |       |
| 0.11              |            |     |         |            |       |               |         |       |
| 0.1               |            |     |         |            |       |               |         |       |
|                   |            |     |         |            |       |               |         |       |
| O.09              |            |     |         |            |       |               |         |       |
| 0.08              |            |     |         |            |       |               |         |       |
| 0.07              |            |     |         | -1-11      |       |               |         |       |
| 0.06              |            |     |         |            |       |               |         |       |
| 4                 |            |     |         |            |       |               |         |       |
| 0.05              |            |     |         |            |       |               |         |       |
| 0.04              |            |     |         | 1 (        |       |               |         |       |
| 0.03              |            |     |         |            | 1     |               |         |       |
| 0.02              |            |     |         |            | 1     |               |         |       |
| 3                 |            |     |         |            |       |               |         |       |
| 0.01              |            |     |         |            |       |               |         | 1     |
| 0 1 2             | 3 4 5 6    | 7 8 | 9 10 11 | 12 13 14   | 15 16 | 17 18 19 20   | 21 22 2 | 23 24 |
|                   |            |     |         | Time (hrs) |       |               |         |       |


# Design Storm Report

Hydrology Studio v 3.0.0.38 10-06-2025

# Storm Distribution: NOAA-D, 24-hr

| Storm    |               | Total Rainfall Volume (in) |      |      |       |       |       |        |  |  |
|----------|---------------|----------------------------|------|------|-------|-------|-------|--------|--|--|
| Duration | <b>✓</b> 1-yr | 2-yr                       | 3-yr | 5-уг | 10-уг | 25-уг | 50-yr | 100-yr |  |  |
| 24 hrs   | 2.87          | 3.44                       | 0.00 | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |  |  |

|               |                |               | Incre          | mental Raint  | all Distribution | , 1-yr        |                |               |                |
|---------------|----------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in)   | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.60         | 0.008658       | 11.78         | 0.012499       | 11.97         | 0.029919         | 12.15         | 0.017344       | 12.33         | 0.009113       |
| 11.62         | 0.009112       | 11.80         | 0.012500       | 11.98         | 0.029921         | 12.17         | 0.017344       | 12.35         | 0.009112       |
| 11.63         | 0.009112       | 11.82         | 0.017344       | 12.00         | 0.029918         | 12,18         | 0.017345       | 12.37         | 0.009113       |
| 11.65         | 0.009113       | 11.83         | 0.017345       | 12.02         | 0.049922         | 12.20         | 0.017344       | 12.38         | 0.009112       |
| 11.67         | 0.009112       | 11.85         | 0.017344       | 12.03         | 0.049925         | 12.22         | 0.012499       | 12.40         | 0.009113       |
| 11.68         | 0.009113       | 11.87         | 0.017344       | 12.05         | 0.049922         | 12.23         | 0.012499       | 12.42         | 0.008658       |
| 11.70         | 0.009112       | 11.88         | 0.017345       | 12.07         | 0.049925         | 12.25         | 0.012499       | 12.43         | 0.008658       |
| 11.72         | 0.012499       | 11.90         | 0.017344       | 12.08         | 0.049922         | 12.27         | 0.012499       | 12.45         | 0.008658       |
| 11.73         | 0.012499       | 11.92         | 0.029920       | 12.10         | 0.049925         | 12.28         | 0.012499       | 12.47         | 0.008658       |
| 11.75         | 0.012499       | 11.93         | 0.029919       | 12.12         | 0.017344         | 12.30         | 0.012498       | 12.48         | 0.008658       |
| 11.77         | 0.012499       | 11.95         | 0.029921       | 12.13         | 0.017345         | 12,32         | 0.009112       | 12.50         | 0.008658       |
|               |                |               |                |               | . I              |               |                |               | I              |

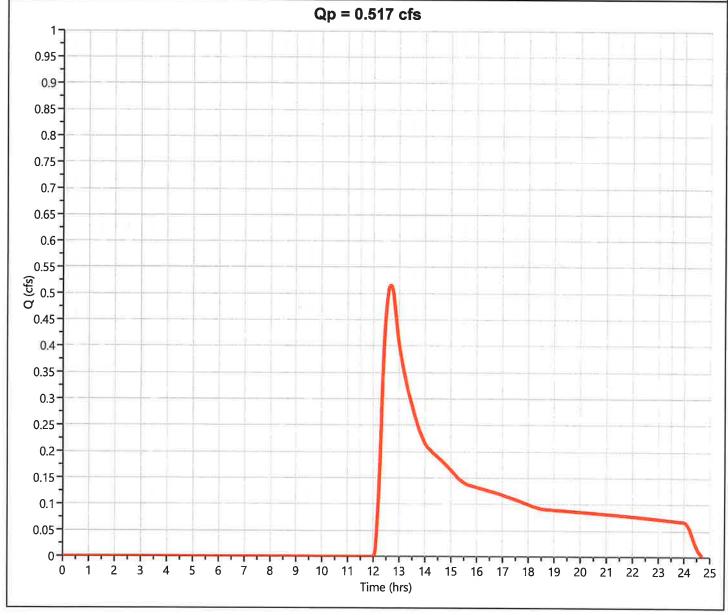


# File: 20250924PARKERS PLACE Hydrology.hys 10-06-2025

# Hydrograph 2-yr Summary

| yd. Hydrograph<br>o. Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s)     | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|---------------------------|--------------------|-----------------------|--------------------------|--------------------------------|----------------------|------------------------------|------------------------------|
| 1 NRCS Runoff             | EX-01SW            | 0.517                 | 12.67                    | 6,169                          | 1 <del>8707</del> 21 |                              |                              |
| 2 NRCS Runoff             | EX-02E             | 0.157                 | 12.47                    | 1,658                          |                      |                              |                              |
| 3 NRCS Runoff             | EX-03S             | 0.048                 | 12.38                    | 479                            | (2122)               |                              |                              |
| 4 Junction                | EX-SITE            | 0.692                 | 12.58                    | 8,307                          | 1, 2, 3              |                              |                              |
| 5 NRCS Runoff             | PR-01SW            | 3.680                 | 12.43                    | 23,565                         |                      |                              |                              |
| 6 NRCS Runoff             | PR-02E             | 0.090                 | 12.37                    | 806                            | :                    |                              |                              |
| 7 NRCS Runoff             | PR-03S             | 0.260                 | 12.35                    | 1,558                          |                      |                              |                              |
| 8 Junction                | PR-SITE            | 4.015                 | 12.43                    | 25,929                         | 5, 6, 7              |                              |                              |
| 9 Pond Route              | PR-01SW DET        | 0.184                 | 18.20                    | 5,503                          | 5                    | 28.27                        | 16,889                       |
| 10 Junction               | PR-SITE-DET        | 0.351                 | 12.35                    | 7,866                          | 6, 7, 9              |                              |                              |
|                           |                    |                       |                          |                                |                      |                              |                              |

#### **EX-01SW**


# Hyd. No. 1

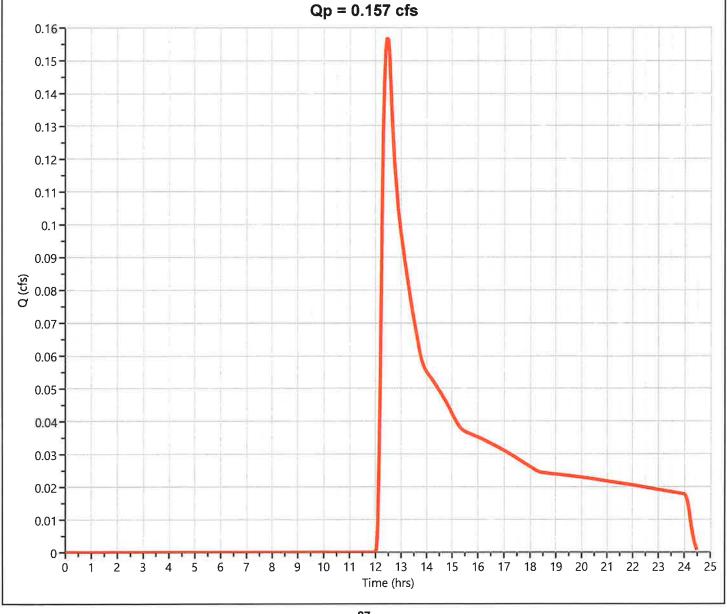
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.517 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 2-yr                 | Time to Peak       | = 12.67 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 6,169 cuft |
| Drainage Area   | = 5.183 ac             | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 31.45 min  |
| Total Rainfall  | = 3.44 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 5.183 55,00 Woods

Weighted CN Method Employed 5.183 55.00




EX-02E Hyd. No. 2

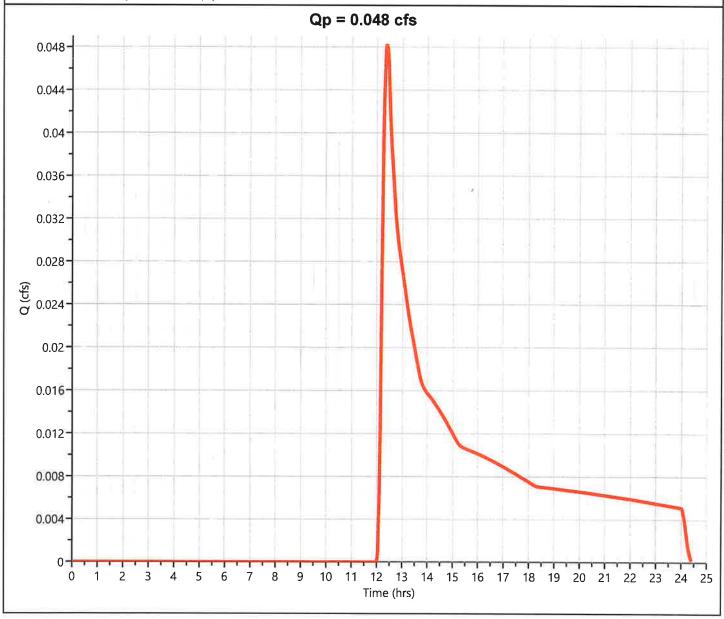
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.157 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 2-yr                 | Time to Peak       | = 12.47 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 1,658 cuft |
| Drainage Area   | = 1.389 ac             | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 20.61 min  |
| Total Rainfall  | = 3.44 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 1,389 55.00 Woods

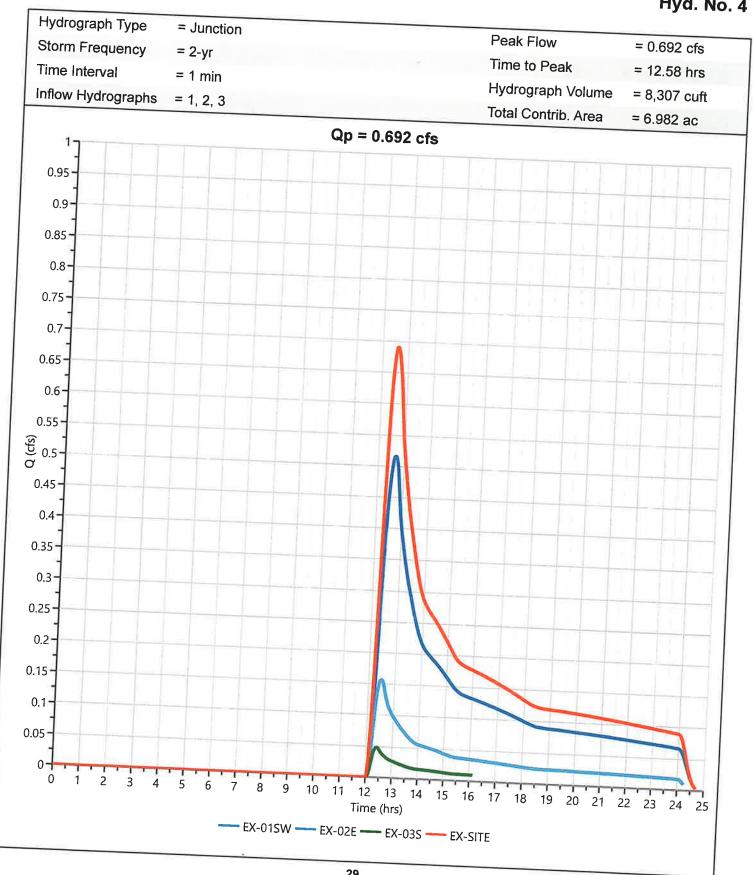
1.389 55.00 Weighted CN Method Employed




# EX-03S Hyd. No. 3

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.048 cfs |
|-----------------|------------------------|--------------------|-------------|
| Storm Frequency | = 2-yr                 | Time to Peak       | = 12.38 hrs |
| Time Interval   | = 1 min                | Runoff Volume      | = 479 cuft  |
| Drainage Area   | = 0.41 ac              | Curve Number       | = 55.00*    |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.32 min |
| Total Rainfall  | = 3.44 in              | Design Storm       | = NOAA-D    |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484       |

#### \* Composite CN Worksheet


AREA (ac) CN DESCRIPTION 0.41 55.00 Woods

0.41 55.00 Weighted CN Method Employed



#### **EX-SITE**

Hyd. No. 4

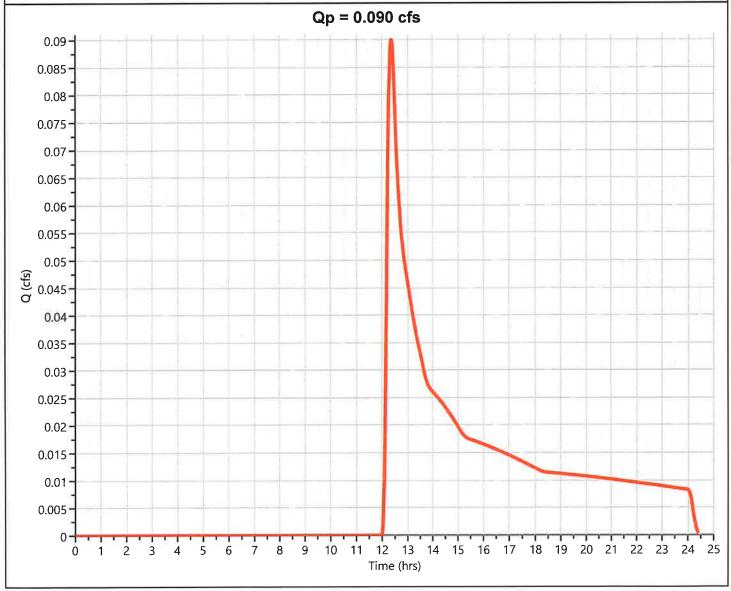


Hyd. No. 5

# PR-01SW

|                 |                        | Peak Flow          | = 3.680 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.43 hrs   |
| Storm Frequency | = 2-yr                 | Runoff Volume      | = 23,565 cuft |
| Time Interval   | = 1 min                | Curve Number       | = 72.48*      |
| Drainage Area   | = 5.852 ac             | Time of Conc. (Tc) | = 34.6 min    |
| Tc Method       | = TR55 (See Worksheet) | Design Storm       | = NOAA-D      |
| Total Rainfall  | = 3.44 in              | Shape Factor       | = 484         |
| Storm Duration  | = 24 hrs               | Snape Factor       |               |

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 2.095     | 98,00 | Impervious                  |
| 1.395     | 61,00 | Landscape                   |
| 1.277     | 58.00 | Conservation                |
| 1.085     | 55,00 | Woods                       |
| 5.852     | 72.48 | Weighted CN Method Employed |

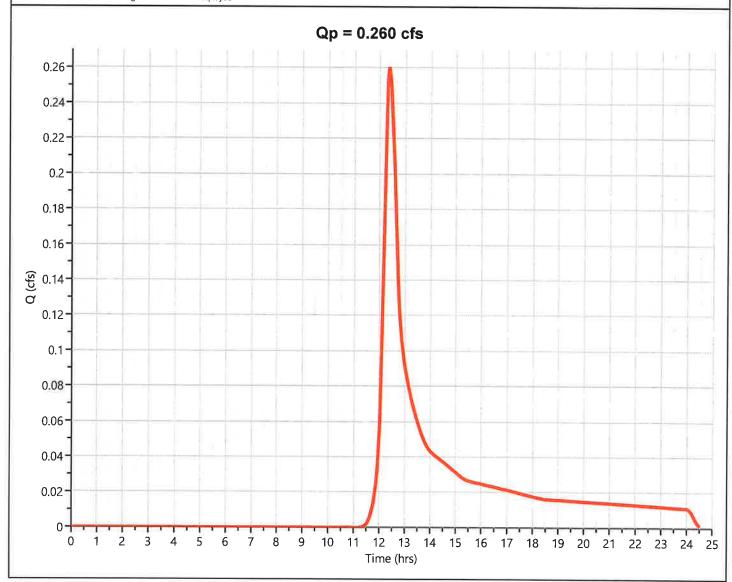





PR-02E Hyd. No. 6

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.090 cfs |
|-----------------|------------------------|--------------------|-------------|
| Storm Frequency | = 2-yr                 | Time to Peak       | = 12.37 hrs |
| Time Interval   | = 1 min                | Runoff Volume      | = 806 cuft  |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*    |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min |
| Total Rainfall  | = 3.44 in              | Design Storm       | = NOAA-D    |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484       |

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0.016     | 61.00 | Landscape                   |
| 0.171     | 58.00 | Conservation                |
| 0.44      | 55.00 | Woods                       |
| 0.627     | 55.97 | Weighted CN Method Employed |



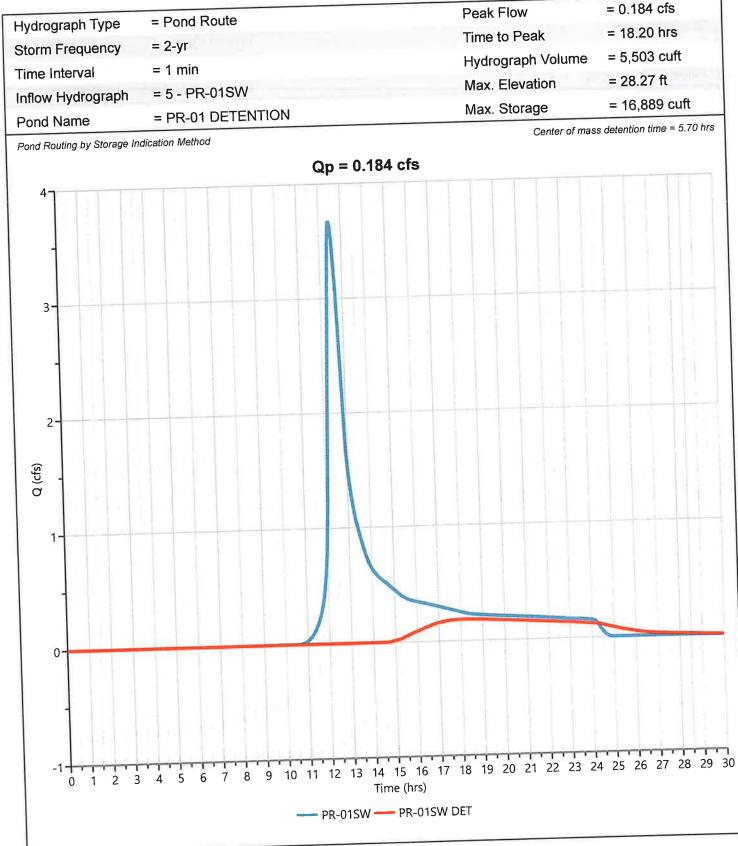

**PR-03S** 

# Hyd. No. 7

| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |
|-----------------|------------------------|--------------------|--------------|
| Total Rainfall  | = 3.44 in              | Design Storm       | = NOAA-D     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Time Interval   | = 1 min                | Runoff Volume      | = 1,558 cuft |
| Storm Frequency | = 2-yr                 | Time to Peak       | = 12.35 hrs  |
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.260 cfs  |

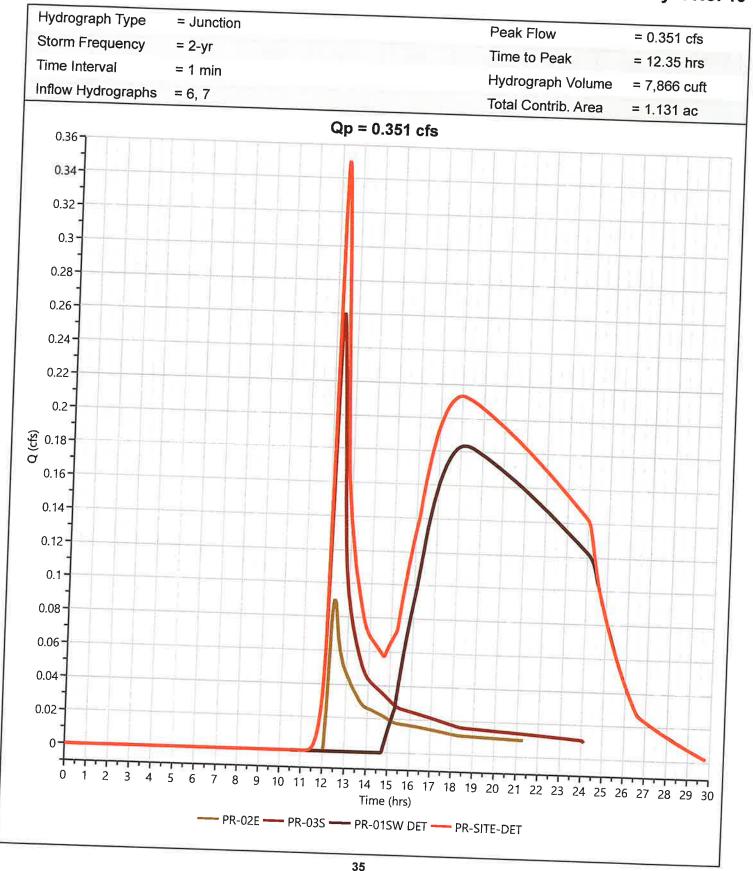
| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0_12      | 98.00 | Impervious                  |
| 0.122     | 61.00 | Landscape                   |
| 0_147     | 58.00 | Conservation                |
| 0.115     | 55.00 | Woods                       |
| 0.504     | 67.57 | Weighted CN Method Employed |




#### **PR-SITE**

#### Hyd. No. 8




# PR-01SW DET

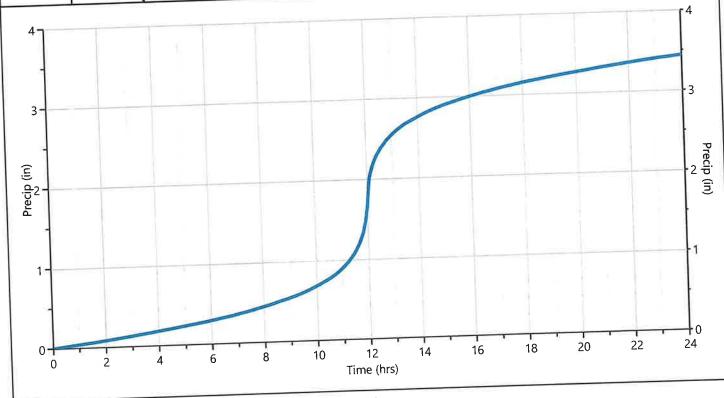
Hyd. No. 9



### PR-SITE-DET

Hyd. No. 10




# Design Storm Report

Hydrology Studio v 3.0.0.38

# Storm Distribution: NOAA-D, 24-hr

|                   |      |               |      | Total Rainfa | l Volume (in) |       |       |        |
|-------------------|------|---------------|------|--------------|---------------|-------|-------|--------|
| Storm<br>Duration |      | 1             | 3-yr | 5-yr         | 10-yr         | 25-yr | 50-yr | 100-yr |
| Duration          | 1-yr | <b>✓</b> 2-yr | 3-y1 |              |               |       | 7.04  | 7.90   |
| 24 hrs            | 2.87 | 3.44          | 0.00 | 4.38         | 5.17          | 6.24  | 7.04  | 7.50   |

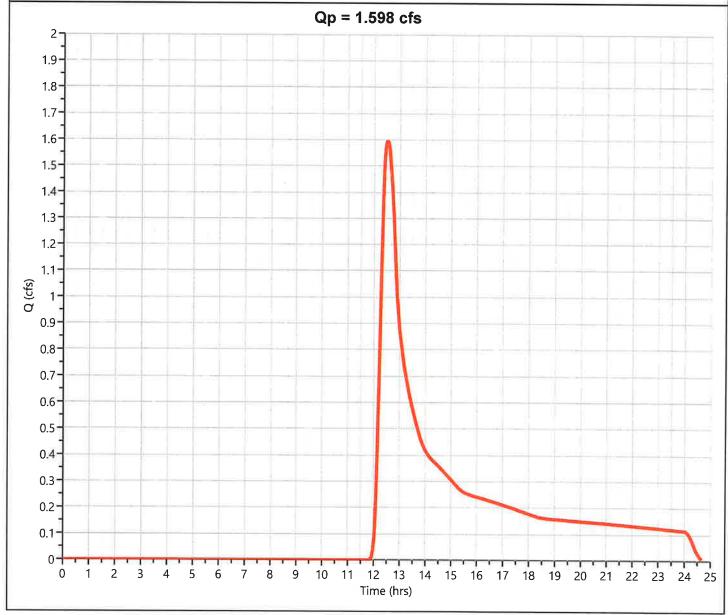
|               |                |               | Increm         | ental Rainfa  | ll Distribution, | 2-yr          |                |               |                |
|---------------|----------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in)   | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
|               |                | 44.70         | 0.014981       | 11.97         | 0.035861         | 12.15         | 0.020789       | 12.33         | 0.010922       |
| 11.60         | 0.010377       | 11.78         |                |               | 0.035863         | 12.17         | 0.020788       | 12.35         | 0.010921       |
| 11.62         | 0.010922       | 11.80         | 0.014982       | 11.98         |                  |               | 0.020790       | 12.37         | 0.010922       |
| 11.63         | 0.010922       | 11.82         | 0.020789       | 12.00         | 0.035860         | 12.18         | 0.020790       |               |                |
|               | 0.040000       | 11.83         | 0.020790       | 12.02         | 0.059837         | 12.20         | 0.020788       | 12.38         | 0.01092        |
| 11.65         | 0.010922       |               |                | 12.03         | 0.059841         | 12.22         | 0.014981       | 12.40         | 0.01092        |
| 11.67         | 0.010922       | 11.85         | 0.020789       | 12.03         | 4-2              | 40.00         | 0.014981       | 12.42         | 0.01037        |
| 11.68         | 0.010922       | 11.87         | 0.020788       | 12.05         | 0.059837         | 12.23         |                |               | 0.01027        |
|               | 0.010921       | 11.88         | 0.020790       | 12.07         | 0.059841         | 12.25         | 0.014982       | 12.43         | 0.01037        |
| 11.70         | 0.010921       |               |                | 12.08         | 0.059837         | 12.27         | 0.014981       | 12.45         | 0.01037        |
| 11.72         | 0.014981       | 11.90         | 0.020789       |               |                  | 12.28         | 0.014982       | 12.47         | 0.01037        |
| 11.73         | 0.014982       | 11.92         | 0.035863       | 12.10         | 0.059841         | 12.28         |                |               | 0.01037        |
|               | 0.014981       | 11.93         | 0.035861       | 12.12         | 0.020789         | 12.30         | 0.014981       | 12.48         | 0.01037        |
| 11.75         | 0.014901       |               | 0.005000       | 12.13         | 0.020790         | 12.32         | 0.010922       | 12.50         | 0.01037        |
| 11.77         | 0.014982       | 11.95         | 0.035863       | 12.13         | 0.02070          |               |                |               |                |



# Hydrograph 5-yr Summary

| lyd.<br>No. | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s)     | Maximum<br>Elevation<br>(ft) | Maximun<br>Storage<br>(cuft) |
|-------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|----------------------|------------------------------|------------------------------|
| 1           | NRCS Runoff        | EX-01SW            | 1.598                 | 12.50                    | 13,048                         | S <del>ana d</del> a |                              |                              |
| 2           | NRCS Runoff        | EX-02E             | 0.520                 | 12.33                    | 3,507                          | -                    |                              |                              |
| 3           | NRCS Runoff        | EX-03S             | 0.166                 | 12.27                    | 1,014                          | (4514)               |                              |                              |
| 4           | Junction           | EX-SITE            | 2.191                 | 12.42                    | 17,569                         | 1, 2, 3              |                              |                              |
| 5           | NRCS Runoff        | PR-01SW            | 6.083                 | 12.42                    | 37,542                         |                      |                              |                              |
| 6           | NRCS Runoff        | PR-02E             | 0.285                 | 12.27                    | 1,661                          |                      |                              |                              |
| 7           | NRCS Runoff        | PR-03S             | 0.472                 | 12.33                    | 2,624                          | ****                 |                              |                              |
| 8           | Junction           | PR-SITE            | 6.762                 | 12.42                    | 41,827                         | 5, 6, 7              |                              |                              |
| 9           | Pond Route         | PR-01SW DET        | 0.809                 | 14.23                    | 19,134                         | 5                    | 28.70                        | 20,332                       |
| 10          | Junction           | PR-SITE-DET        | 0.921                 | 14.07                    | 23,419                         | 6, 7, 9              |                              |                              |
|             |                    |                    |                       |                          |                                |                      |                              |                              |

#### **EX-01SW**


# Hyd. No. 1

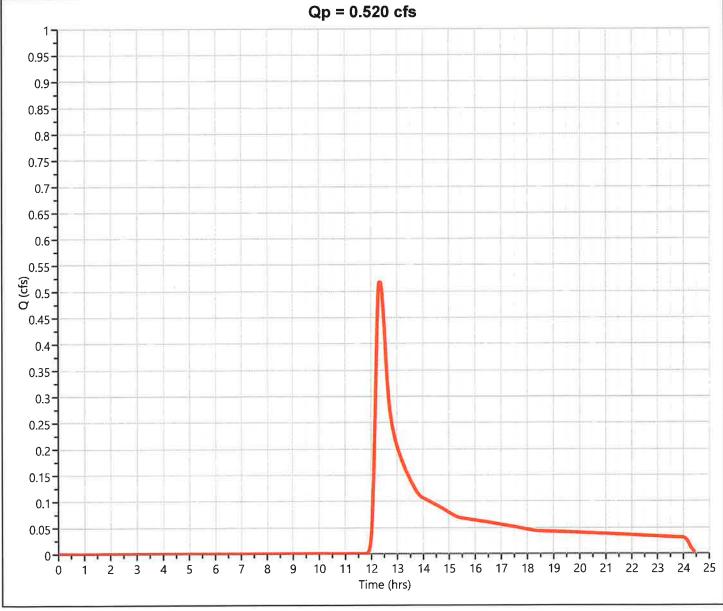
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 1.598 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 5-yr                 | Time to Peak       | = 12.50 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 13,048 cuft |
| Drainage Area   | = 5.183 ac             | Curve Number       | = 55.00*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 31.45 min   |
| Total Rainfall  | = 4.38 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 5,183 55,00 Woods

5.183 55.00 Weighted CN Method Employed




EX-02E Hyd. No. 2

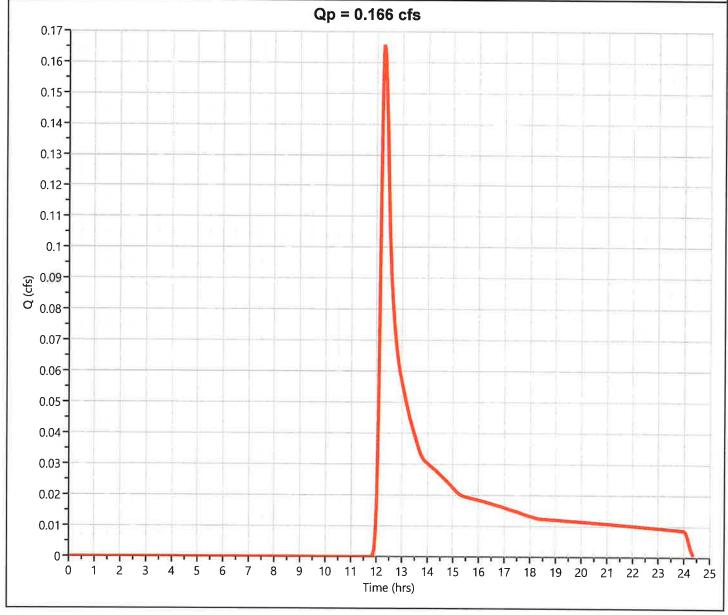
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.520 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 5-yr                 | Time to Peak       | = 12.33 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 3,507 cuft |
| Drainage Area   | = 1.389 ac             | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 20.61 min  |
| Total Rainfall  | = 4.38 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 1,389 55,00 Woods

1.389 55.00 Weighted CN Method Employed

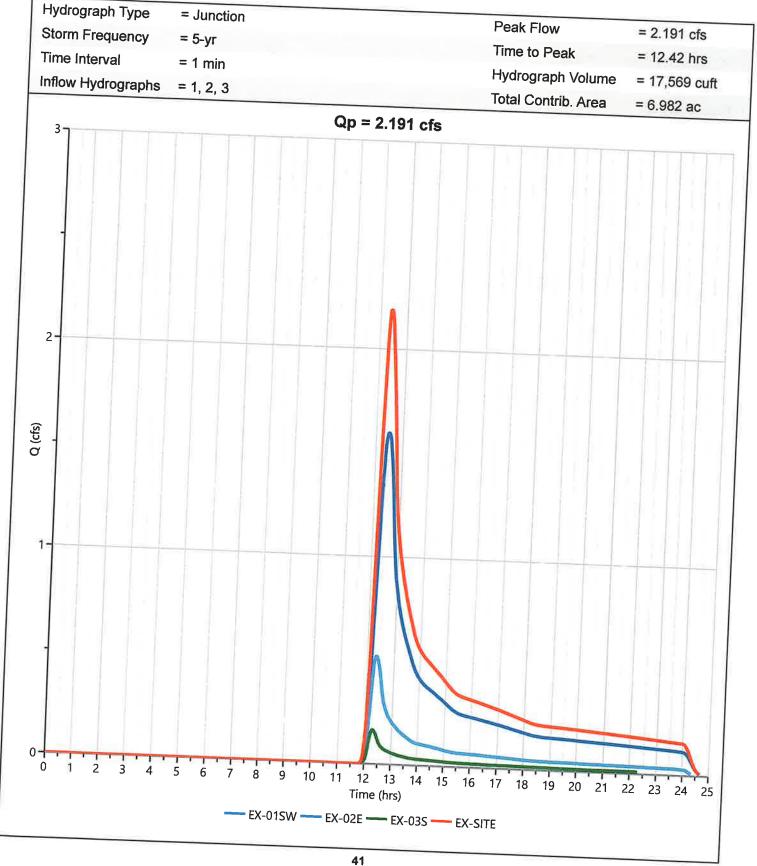



#### **EX-03S** Hyd. No. 3

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.166 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 5-yr                 | Time to Peak       | = 12.27 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 1,014 cuft |
| Drainage Area   | = 0.41 ac              | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.32 min  |
| Total Rainfall  | = 4.38 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 55,00 Woods

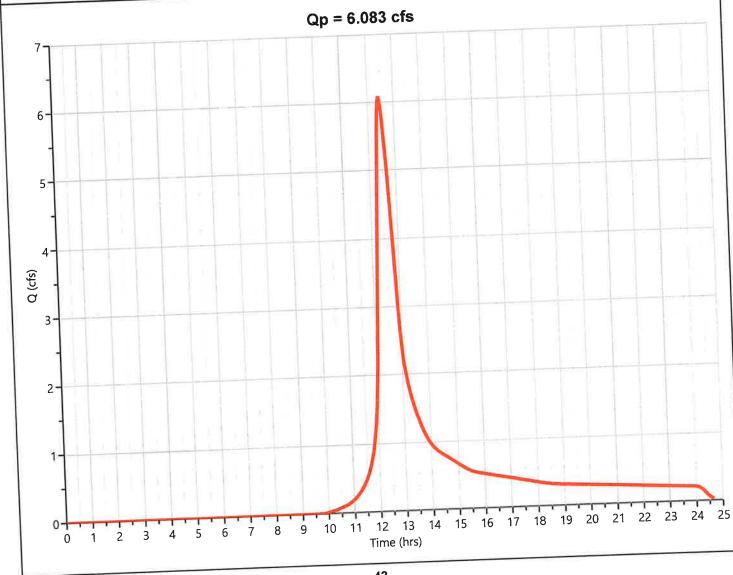

Weighted CN Method Employed 0.41 55.00





#### **EX-SITE**

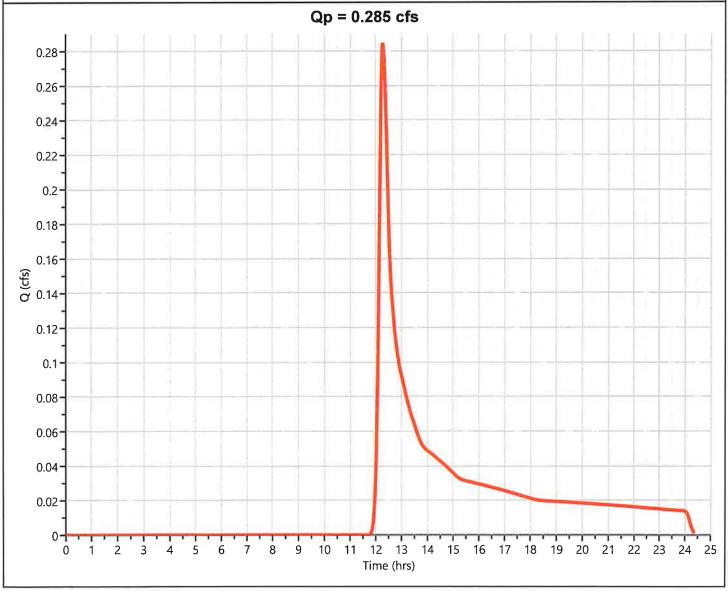
# Hyd. No. 4




# PR-01SW

# Hyd. No. 5

|                 |                        | Peak Flow          | = 6.083  cfs  |
|-----------------|------------------------|--------------------|---------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.42 hrs   |
| Storm Frequency | = 5-уг                 | Runoff Volume      | = 37,542 cuft |
| Time Interval   | = 1 min                | Curve Number       | = 72.48*      |
| Drainage Area   | = 5.852 ac             | Time of Conc. (Tc) | = 34.6 min    |
| Tc Method       | = TR55 (See Worksheet) | Design Storm       | = NOAA-D      |
| Total Rainfall  | = 4.38 in              | Shape Factor       | = 484         |
| Storm Duration  | = 24 hrs               | Onapo i detti      |               |

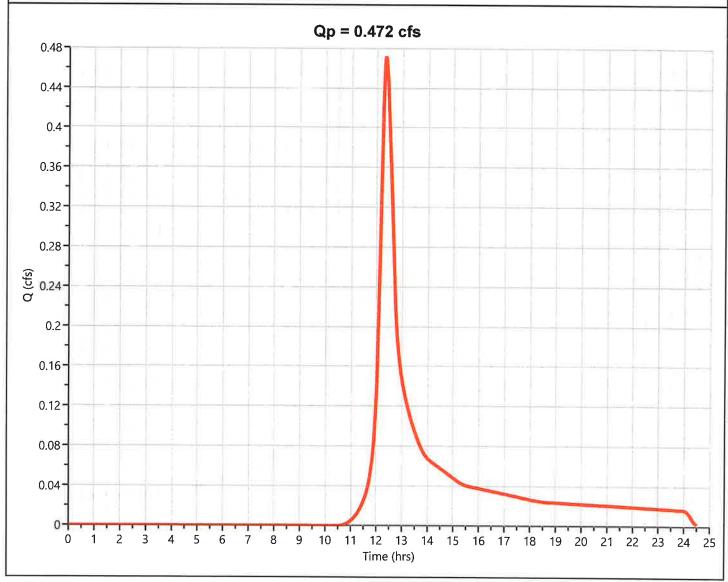

| pervious<br>ndscape |
|---------------------|
|                     |



PR-02E Hyd. No. 6

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.285 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 5-yr                 | Time to Peak       | = 12.27 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 1,661 cuft |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min  |
| Total Rainfall  | = 4.38 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0.016     | 61,00 | Landscape                   |
| 0.171     | 58.00 | Conservation                |
| 0.44      | 55,00 | Woods                       |
| 0.627     | 55.97 | Weighted CN Method Employed |




#### PR-03S

### Hyd. No. 7

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.472 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 5-yr                 | Time to Peak       | = 12.33 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 2,624 cuft |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Total Rainfall  | = 4.38 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

| AREA (ac) | CN    | DESCRIPTION              |
|-----------|-------|--------------------------|
| 0.12      | 98.00 | Impervious               |
| 0.122     | 61.00 | Landscape                |
| 0.147     | 58.00 | Conservation             |
| 0.115     | 55.00 | Woods                    |
| 0.504     | 67.57 | Weighted CN Method Emplo |



PR-SITE Hyd. No. 8

| -lydrograph Type  | = Junction |                        | Peak Flow           | = 6.762 cfs   |
|-------------------|------------|------------------------|---------------------|---------------|
| Storm Frequency   | = 5-yr     |                        | Time to Peak        | = 12.42 hrs   |
| Time Interval     | = 1 min    |                        | Hydrograph Volume   | = 41,827 cuft |
| nflow Hydrographs | = 5, 6, 7  |                        | Total Contrib. Area | = 6.983 ac    |
|                   |            | Qp = 6.762 cfs         |                     |               |
| 7                 |            |                        |                     |               |
|                   |            |                        |                     |               |
|                   |            |                        |                     |               |
| 6-                |            |                        |                     |               |
| 0                 |            |                        |                     |               |
|                   |            |                        |                     |               |
|                   |            |                        |                     |               |
| 5                 |            |                        |                     |               |
|                   |            |                        |                     |               |
| -                 |            |                        |                     |               |
|                   |            |                        |                     |               |
| 4-                |            |                        |                     |               |
| (CLS)             |            |                        |                     |               |
| 2                 |            |                        |                     |               |
| 3-                |            |                        |                     |               |
|                   |            |                        |                     |               |
| -                 |            |                        |                     |               |
|                   |            |                        |                     |               |
| 2-                |            |                        |                     |               |
|                   |            |                        |                     |               |
|                   |            |                        |                     |               |
| 1-                |            |                        |                     |               |
|                   |            |                        |                     |               |
| -                 |            | / ^                    |                     |               |
|                   |            |                        |                     |               |
| 0 1 2 3           | 4 5 6 7 8  | 9 10 11 12 13 14       | 15 16 17 18 19 20   | 21 22 23 24   |
|                   |            | Time (hrs)             |                     |               |
|                   | PR-        | 01SW — PR-02E — PR-03S | PR-SITE             |               |

#### **PR-01SW DET**

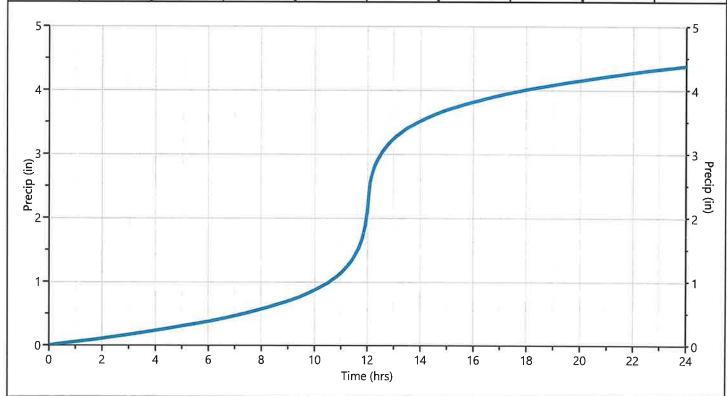
# Hyd. No. 9

| Hydrograph Type         | = Pond Route                    | Peak Flow         | = 0.809 cfs               |  |
|-------------------------|---------------------------------|-------------------|---------------------------|--|
| Storm Frequency         | = 5-yr                          | Time to Peak      | = 14.23 hrs               |  |
| Time Interval           | = 1 min                         | Hydrograph Volume | = 19,134 cuft             |  |
| Inflow Hydrograph       | = 5 - PR-01SW                   | Max. Elevation    | = 28.70 ft                |  |
| Pond Name               | = PR-01 DETENTION               | Max. Storage      | = 20,332 cuft             |  |
| Pond Routing by Storage | Indication Method               | Center of mas     | s detention time = 3,03 h |  |
|                         | Qp = 0.809 c                    | fs                |                           |  |
| 77                      |                                 |                   |                           |  |
| 4                       |                                 |                   |                           |  |
|                         |                                 |                   |                           |  |
| 6-                      | A .                             |                   |                           |  |
| 4                       | A I                             |                   |                           |  |
|                         |                                 |                   |                           |  |
| 5-                      |                                 |                   |                           |  |
| 9                       |                                 |                   |                           |  |
|                         |                                 |                   |                           |  |
| 4-                      |                                 |                   |                           |  |
| - 1                     |                                 |                   |                           |  |
| ( <del>§</del> ) 3 −    |                                 |                   |                           |  |
| ö 37                    |                                 |                   |                           |  |
| 4                       |                                 |                   |                           |  |
| 2-                      |                                 |                   |                           |  |
|                         |                                 |                   | 1                         |  |
| -                       |                                 |                   |                           |  |
| 1-                      |                                 |                   |                           |  |
|                         |                                 |                   |                           |  |
| 1                       |                                 |                   |                           |  |
| 0                       |                                 |                   |                           |  |
| 30                      |                                 |                   |                           |  |
| 1                       |                                 |                   |                           |  |
| -1                      |                                 | <del></del>       |                           |  |
| 0 2                     | 4 6 8 10 12 14 16<br>Time (hrs) | 18 20 22 24       | 26 28 30                  |  |
|                         |                                 | ISW DET           |                           |  |



PR-SITE-DET Hyd. No. 10

| Hydrograph Type                    | = Junction  |                                                    | Peak Flow           | = 0.921 cfs   |
|------------------------------------|-------------|----------------------------------------------------|---------------------|---------------|
| Storm Frequency                    | = 5-yr      |                                                    | Time to Peak        | = 14.07 hrs   |
| Time Interval                      | = 1 min     |                                                    | Hydrograph Volume   | = 23,419 cuft |
| nflow Hydrographs                  | = 6, 7      |                                                    | Total Contrib. Area | = 1.131 ac    |
|                                    | Qp          | = 0.921 cfs                                        |                     |               |
| 1]                                 |             |                                                    |                     |               |
| 0.95                               |             |                                                    |                     |               |
| 0.9                                |             | $\wedge$                                           |                     |               |
| 0.85                               |             | $A \wedge A = A + A + A + A + A + A + A + A + A +$ |                     |               |
| 0.8                                |             |                                                    |                     |               |
| 0.75                               |             |                                                    |                     |               |
| 0.7                                |             |                                                    |                     |               |
| =                                  |             |                                                    |                     |               |
| 0.65                               |             |                                                    |                     |               |
| 0.6                                |             |                                                    |                     |               |
| 0.55                               |             |                                                    |                     |               |
| (\$\frac{\cup_{0.5}}{\cup_{0.5}}\) |             |                                                    |                     |               |
| 0.45                               |             |                                                    |                     |               |
| 0.4                                |             |                                                    | \                   |               |
| 0.35                               |             |                                                    |                     |               |
| 0.3                                |             |                                                    |                     |               |
| 0.25                               |             |                                                    |                     |               |
| 0.2                                |             |                                                    | 1                   |               |
| 0.15                               |             |                                                    | 1                   |               |
| 0.1                                |             | //                                                 |                     |               |
| 0.05                               |             |                                                    |                     |               |
| -                                  |             |                                                    |                     |               |
| 0                                  | 4 6 8 10 12 | 14 16 18                                           | 20 22 24            | 26 28         |


# Design Storm Report

Hydrology Studio v 3.0.0.38 10-06-2025

# Storm Distribution: NOAA-D, 24-hr

| Storm    |      |      |      | Total Rainfal | l Volume (in) |       |       |        |  |
|----------|------|------|------|---------------|---------------|-------|-------|--------|--|
| Duration | 1-yr | 2-уг | 3-yr | <b>✓</b> 5-yr | 10-yr         | 25-yr | 50-yr | 100-yr |  |
| 24 hrs   | 2.87 | 3.44 | 0.00 | 4.38          | 5.17          | 6.24  | 7.04  | 7.90   |  |

|               |                |               | Incre          | mental Rainf  | all Distribution | , 5-yr        |                |               |                |
|---------------|----------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in)   | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.60         | 0.013213       | 11.78         | 0.019074       | 11.97         | 0.045660         | 12.15         | 0.026469       | 12.33         | 0.013907       |
| 11.62         | 0.013907       | 11.80         | 0.019077       | 11.98         | 0.045663         | 12.17         | 0.026469       | 12.35         | 0.013906       |
| 11.63         | 0.013906       | 11.82         | 0.026469       | 12.00         | 0.045659         | 12.18         | 0.026470       | 12.37         | 0.013907       |
| 11.65         | 0.013907       | 11.83         | 0.026471       | 12.02         | 0.076188         | 12,20         | 0.026469       | 12.38         | 0.013906       |
| 11.67         | 0.013906       | 11.85         | 0.026469       | 12.03         | 0.076192         | 12.22         | 0.019075       | 12.40         | 0.013907       |
| 11.68         | 0.013907       | 11.87         | 0.026469       | 12.05         | 0.076188         | 12.23         | 0.019074       | 12.42         | 0.013213       |
| 11.70         | 0.013906       | 11.88         | 0.026471       | 12.07         | 0.076192         | 12.25         | 0.019075       | 12.43         | 0.013214       |
| 11.72         | 0.019075       | 11.90         | 0.026469       | 12.08         | 0.076188         | 12.27         | 0.019074       | 12.45         | 0.013213       |
| 11.73         | 0.019075       | 11.92         | 0.045663       | 12.10         | 0.076193         | 12.28         | 0.019076       | 12.47         | 0.013213       |
| 11.75         | 0.019074       | 11.93         | 0.045660       | 12.12         | 0.026469         | 12.30         | 0.019074       | 12.48         | 0.013214       |
| 11.77         | 0.019076       | 11.95         | 0.045663       | 12.13         | 0.026471         | 12.32         | 0.013906       | 12.50         | 0.013212       |

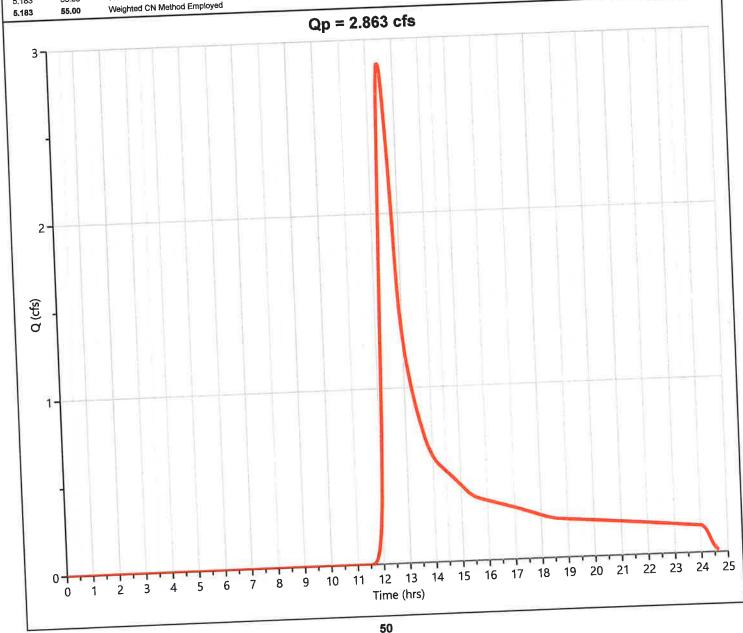


# Hydrograph 10-yr Summary

File: 20250924PARKERS PLACE Hydrology.hys

| No. | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation | Maximu<br>Storage |
|-----|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|----------------------|-------------------|
| 1   | NRCS Runoff        | EX-01SW            | 2.863                 | 12.43                    | 20,185                         |                  | (ft)                 | (cuft)            |
| 2   | NRCS Runoff        | EX-02E             | 0.942                 | 12.30                    |                                | -                |                      |                   |
| 3   | NRCS Runoff        | EX-03S             | 0.299                 | 12.27                    | 5,426                          |                  |                      |                   |
| 4   | Junction           | EX-SITE            | 3.958                 | 12.38                    | 1,568                          |                  |                      |                   |
| 5   | NRCS Runoff        | PR-01SW            | 8.268                 | 12.42                    | 27,178                         | 1, 2, 3          |                      |                   |
| 6   | NRCS Runoff        | PR-02E             | 0.495                 | 12.25                    | 50,350                         |                  |                      |                   |
| 7   | NRCS Runoff        | PR-03S             | 0.670                 | 12.33                    | 2,539                          |                  |                      |                   |
| 8   | Junction           | PR-SITE            | 9.275                 | 12.40                    | 3,627                          | TESS.            |                      |                   |
| 9   | Pond Route         | PR-01SW DET        | 1.346                 |                          | 56,516                         | 5, 6, 7          |                      |                   |
| 10  | Junction           | PR-SITE-DET        | 1.550                 | 13.80                    | 31,680                         | 5                | 29.31                | 25,622            |
|     |                    |                    | 1.550                 | 13.37                    | 37,846                         | 6, 7, 9          |                      |                   |
|     |                    |                    |                       |                          |                                | 1                | 1                    |                   |
|     |                    |                    |                       |                          |                                |                  |                      |                   |

### **EX-01SW**


# Hyd. No. 1

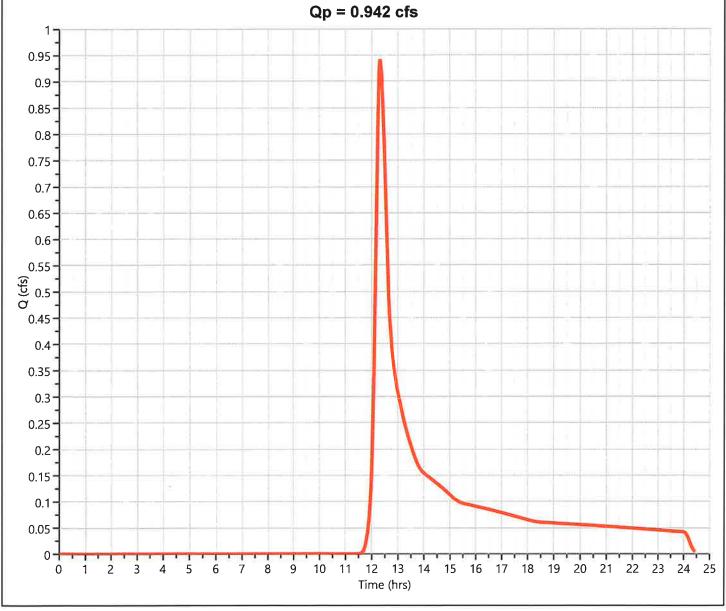
|                 |                        | Peak Flow          | = 2.863 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.43 hrs   |
| Storm Frequency | = 10-yr                | Runoff Volume      | = 20,185 cuft |
| Time Interval   | = 1 min                | Curve Number       | = 55.00*      |
| Drainage Area   | = 5.183 ac             | Time of Conc. (Tc) | = 31.45 min   |
| Tc Method       | = TR55 (See Worksheet) | Design Storm       | = NOÁA-D      |
| Total Rainfall  | = 5.17 in              | Shape Factor       | = 484         |
| Storm Duration  | = 24 hrs               | Ghape i actor      |               |

#### \* Composite CN Worksheet

DESCRIPTION AREA (ac) CN 55.00 Woods

Weighted CN Method Employed




EX-02E Hyd. No. 2

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.942 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 10-yr                | Time to Peak       | = 12.30 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 5,426 cuft |
| Drainage Area   | = 1.389 ac             | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 20.61 min  |
| Total Rainfall  | = 5.17 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

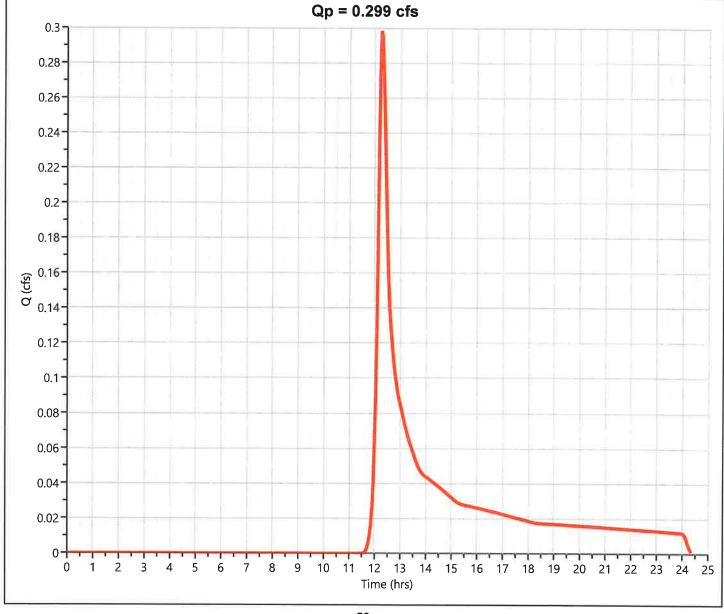
#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 1,389 55,00 Woods

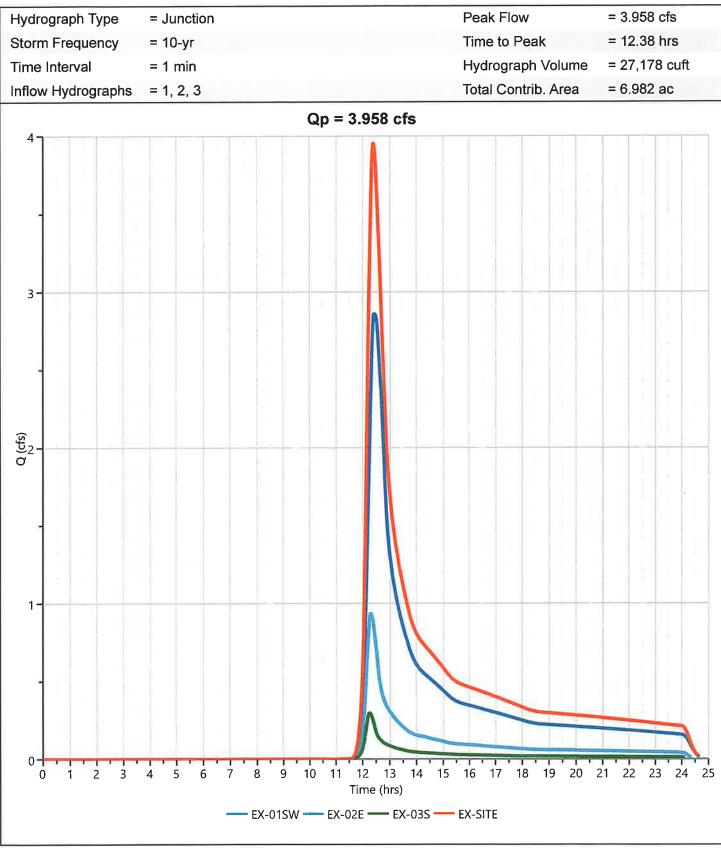
1.389 55.00 Weighted CN Method Employed



#### **EX-03S**


### Hyd. No. 3

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.299 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 10-yr                | Time to Peak       | = 12.27 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 1,568 cuft |
| Drainage Area   | = 0.41 ac              | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.32 min  |
| Total Rainfall  | = 5.17 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

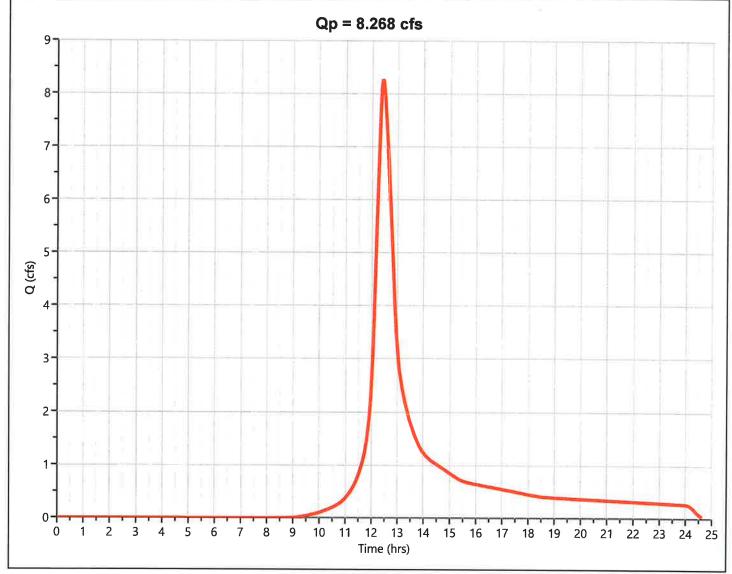

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 0.41 55.00 Woods

0.41 55.00 Weighled CN Method Employed



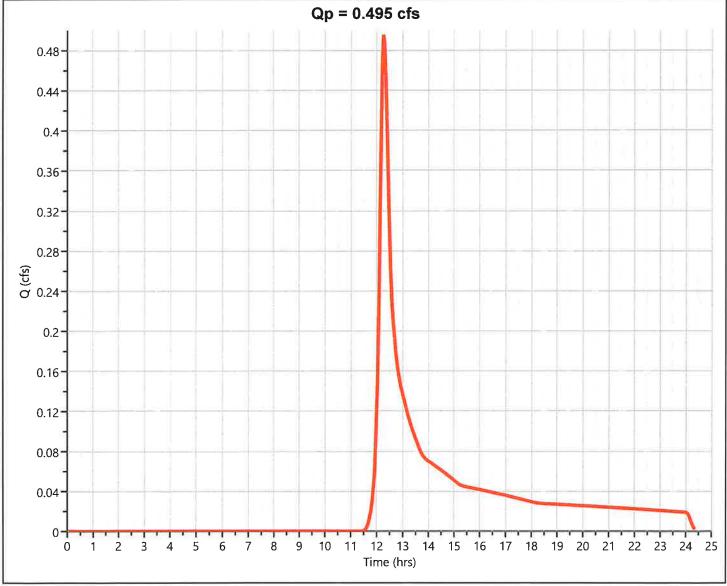
EX-SITE Hyd. No. 4




PR-01SW

## Hyd. No. 5

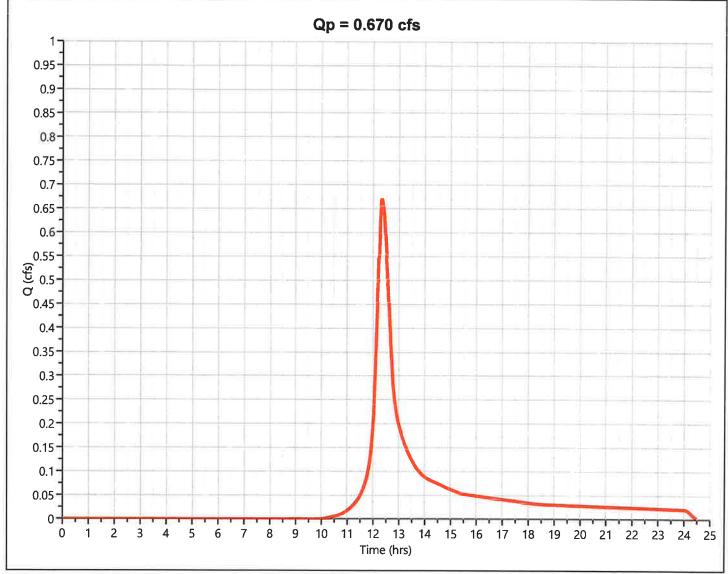
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 8.268 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 10-yr                | Time to Peak       | = 12.42 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 50,350 cuft |
| Drainage Area   | = 5.852 ac             | Curve Number       | = 72.48*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 34.6 min    |
| Total Rainfall  | = 5.17 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |
|                 |                        |                    |               |


| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 2.095     | 98.00 | Impervious                  |
| 1.395     | 61.00 | Landscape                   |
| 1.277     | 58.00 | Conservation                |
| 1.085     | 55.00 | Woods                       |
| 5.852     | 72.48 | Weighted CN Method Employed |

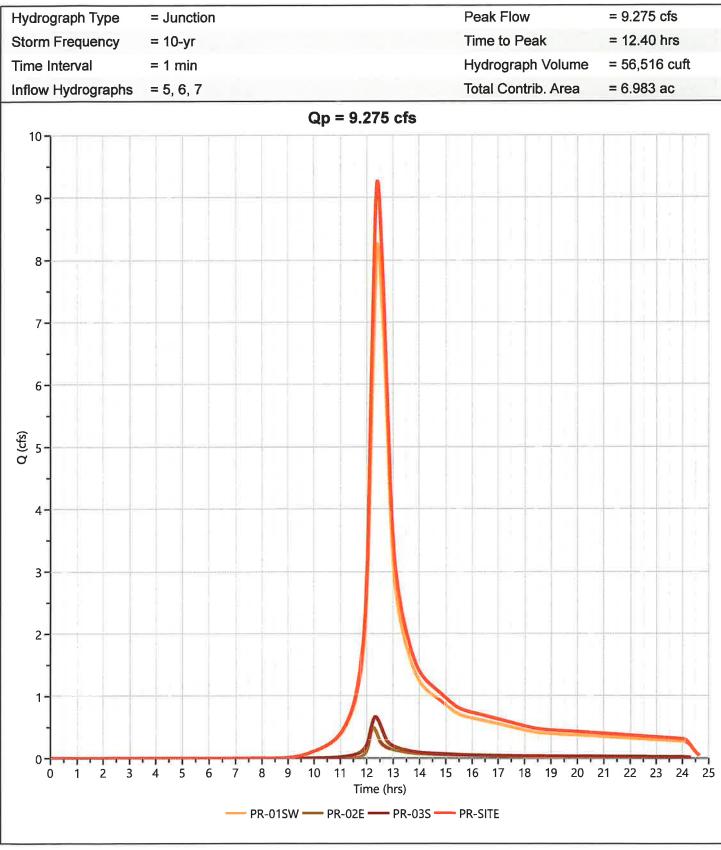


PR-02E Hyd. No. 6

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.495 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 10-yr                | Time to Peak       | = 12.25 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 2,539 cuft |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min  |
| Total Rainfall  | = 5.17 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |


| 0.627     | 55.97 | Weighted CN Method Employed |
|-----------|-------|-----------------------------|
| 0.44      | 55,00 | Woods                       |
| 0.171     | 58.00 | Conservation                |
| 0.016     | 61.00 | Landscape                   |
| AREA (ac) | CN    | DESCRIPTION                 |




PR-03S Hyd. No. 7

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.670 cfs  |
|-----------------|------------------------|--------------------|--------------|
|                 |                        | reak rlow          | = 0.670 cts  |
| Storm Frequency | = 10-yr                | Time to Peak       | = 12.33 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 3,627 cuft |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Total Rainfall  | = 5.17 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0.12      | 98.00 | Impervious                  |
| 0.122     | 61.00 | Landscape                   |
| 0_147     | 58.00 | Conservation                |
| 0.115     | 55,00 | Woods                       |
| 0.504     | 67.57 | Weighted CN Method Employed |



PR-SITE Hyd. No. 8



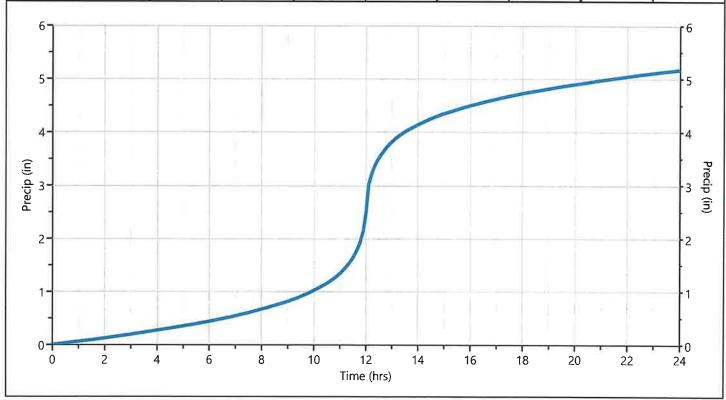
## **PR-01SW DET**

| Hydrograph Type             | = Pond Route                  | Peak Flow         | = 1.346 cfs               |  |
|-----------------------------|-------------------------------|-------------------|---------------------------|--|
| Storm Frequency             | = 10-yr                       | Time to Peak      | = 13.80 hrs               |  |
| Time Interval               | = 1 min                       | Hydrograph Volume | = 31,680 cuft             |  |
| Inflow Hydrograph           | = 5 - PR-01SW                 | Max. Elevation    | = 29.31 ft                |  |
| Pond Name = PR-01 DETENTION |                               | Max. Storage      | = 25,622 cuft             |  |
| Pond Routing by Storage In  | dication Method               | Center of mass    | s detention time = 2.62 h |  |
|                             | Qp = 1.346 c                  | fs                |                           |  |
| 97                          |                               |                   |                           |  |
| -                           |                               |                   |                           |  |
| 8-                          |                               |                   |                           |  |
| 27-                         |                               |                   |                           |  |
| 7-                          |                               |                   |                           |  |
|                             |                               |                   |                           |  |
| 1                           |                               |                   |                           |  |
| 6-                          |                               |                   |                           |  |
| -                           |                               |                   |                           |  |
| 5-                          |                               |                   |                           |  |
|                             |                               |                   |                           |  |
| (SJD) Q                     |                               |                   |                           |  |
| ŏ <sup>4</sup> ]            |                               |                   |                           |  |
| 1                           |                               |                   |                           |  |
| 3                           |                               |                   |                           |  |
| -                           |                               |                   |                           |  |
| 2-                          |                               |                   |                           |  |
|                             |                               |                   |                           |  |
|                             |                               |                   |                           |  |
| 1-                          |                               |                   |                           |  |
| 1                           |                               |                   |                           |  |
| 0                           |                               |                   |                           |  |
| 4                           |                               |                   |                           |  |
| -1                          |                               |                   |                           |  |
| 0 2 4                       | 6 8 10 12 14 16<br>Time (hrs) |                   | 26 28 30                  |  |
|                             | PR-01SW PR-0                  | 1SW DET           |                           |  |



PR-SITE-DET Hyd. No. 10

| Hydrograph Type   | = Junction        |                                 | Peak Flow            | = 1.550 cfs                  |  |  |  |  |
|-------------------|-------------------|---------------------------------|----------------------|------------------------------|--|--|--|--|
| Storm Frequency   | = 10-yr           |                                 | Time to Peak         | = 13.37 hrs<br>= 37,846 cuft |  |  |  |  |
| Time Interval     | = 1 min           |                                 | Hydrograph Volume    |                              |  |  |  |  |
| nflow Hydrographs | = 6, 7            |                                 | Total Contrib. Area  | = 1.131 ac                   |  |  |  |  |
| Qp = 1.550 cfs    |                   |                                 |                      |                              |  |  |  |  |
| 2                 |                   |                                 |                      |                              |  |  |  |  |
| 1.9               |                   |                                 |                      |                              |  |  |  |  |
| 1.8               |                   |                                 |                      |                              |  |  |  |  |
| 1.7               |                   |                                 |                      |                              |  |  |  |  |
| 1.6               |                   |                                 |                      |                              |  |  |  |  |
| 1.5               |                   | $\wedge$                        |                      |                              |  |  |  |  |
| 1.4               |                   |                                 | 81 7 3 1 1 1 1       |                              |  |  |  |  |
| 1.3               |                   |                                 |                      |                              |  |  |  |  |
| 1.2-              |                   |                                 |                      |                              |  |  |  |  |
| 1.1-              |                   |                                 |                      |                              |  |  |  |  |
| rate the second   |                   |                                 |                      |                              |  |  |  |  |
| (S)<br>2 1        |                   |                                 |                      |                              |  |  |  |  |
| 0.9               |                   |                                 |                      |                              |  |  |  |  |
| 0.8               |                   | 1                               |                      |                              |  |  |  |  |
| 0.7               |                   |                                 | 1                    |                              |  |  |  |  |
| 0.6               |                   | N                               | 1                    |                              |  |  |  |  |
| 0.5               |                   |                                 |                      |                              |  |  |  |  |
| 0.4               |                   |                                 |                      |                              |  |  |  |  |
| 0.3               |                   |                                 |                      |                              |  |  |  |  |
| 0.2               |                   |                                 |                      |                              |  |  |  |  |
| 0.1               |                   |                                 |                      |                              |  |  |  |  |
| 0-                |                   |                                 |                      |                              |  |  |  |  |
| 0 1 2 3           | 4 5 6 7 8 9 10 11 | 12 13 14 15 16 17<br>Time (hrs) | 18 19 20 21 22 23 24 | 25 26 27 28 29               |  |  |  |  |
|                   | — PR-02E — PR-    | 03S — PR-01SW DET —             | PR-SITE-DET          |                              |  |  |  |  |


# Design Storm Report

Hydrology Studio v 3.0.0.38 10-06-2025

# Storm Distribution: NOAA-D, 24-hr

| Storm    | Total Rainfall Volume (in) |      |      |      |                |       |       |        |  |
|----------|----------------------------|------|------|------|----------------|-------|-------|--------|--|
| Duration | 1-yr                       | 2-yr | 3-yr | 5-yr | <b>✓</b> 10-yr | 25-yr | 50-уг | 100-yr |  |
| 24 hrs   | 2.87                       | 3.44 | 0.00 | 4.38 | 5.17           | 6.24  | 7.04  | 7.90   |  |

|               | Incremental Rainfall Distribution, 10-yr |               |                |               |                |               |                |               |                |
|---------------|------------------------------------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in)                           | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.60         | 0.015596                                 | 11.78         | 0.022515       | 11.97         | 0.053896       | 12.15         | 0.031243       | 12.33         | 0.016415       |
| 11.62         | 0.016415                                 | 11.80         | 0.022517       | 11.98         | 0.053899       | 12.17         | 0.031243       | 12.35         | 0.016414       |
| 11,63         | 0.016414                                 | 11.82         | 0.031243       | 12.00         | 0.053895       | 12.18         | 0.031245       | 12.37         | 0.016415       |
| 11.65         | 0.016415                                 | 11.83         | 0.031245       | 12.02         | 0.089930       | 12.20         | 0.031243       | 12.38         | 0.016414       |
| 11.67         | 0.016414                                 | 11.85         | 0.031243       | 12.03         | 0.089935       | 12.22         | 0.022516       | 12.40         | 0.016416       |
| 11.68         | 0.016415                                 | 11.87         | 0.031243       | 12.05         | 0.089930       | 12.23         | 0.022515       | 12.42         | 0.015596       |
| 11.70         | 0.016414                                 | 11.88         | 0.031245       | 12.07         | 0.089935       | 12.25         | 0.022516       | 12.43         | 0.015597       |
| 11.72         | 0.022515                                 | 11.90         | 0.031244       | 12.08         | 0.089930       | 12.27         | 0.022515       | 12.45         | 0.015596       |
| 11.73         | 0.022516                                 | 11.92         | 0.053898       | 12.10         | 0.089935       | 12.28         | 0.022516       | 12.47         | 0.015596       |
| 11.75         | 0.022515                                 | 11.93         | 0.053896       | 12.12         | 0.031243       | 12.30         | 0.022514       | 12.48         | 0.015597       |
| 11.77         | 0.022516                                 | 11.95         | 0.053899       | 12.13         | 0.031245       | 12,32         | 0.016414       | 12.50         | 0.015596       |



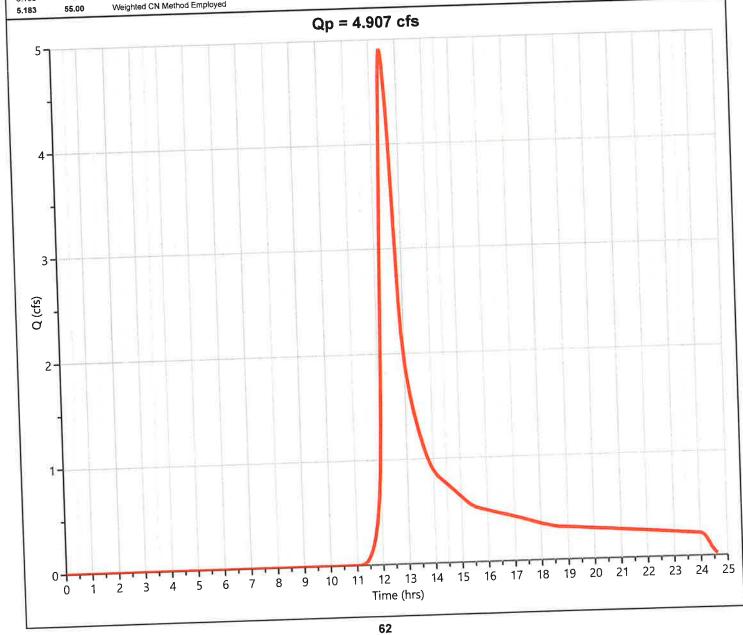
# Hydrograph 25-yr Summary

File: 20250924PARKERS PLACE Hydrology.hys 10-06-2025

| No. | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | inflow<br>Hyd(s)     | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage |
|-----|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|----------------------|------------------------------|--------------------|
| 1   | NRCS Runoff        | EX-01SW            | 4.907                 | 12.40                    | 31,392                         | ****                 | (15)                         | (cuft)             |
| 2   | NRCS Runoff        | EX-02E             | 1.603                 | 12.28                    | 8,438                          |                      |                              |                    |
| 3   | NRCS Runoff        | EX-03S             | 0.508                 | 12.25                    | 2,439                          | ( <del>State</del> ) |                              |                    |
| 4   | Junction           | EX-SITE            | 6.756                 | 12.37                    | 42,269                         | 1, 2, 3              |                              |                    |
| 5   | NRCS Runoff        | PR-01SW            | 11.37                 | 12.42                    | 68,776                         |                      |                              |                    |
| 6   | NRCS Runoff        | PR-02E             | 0.825                 | 12.25                    | 3,910                          | <del></del>          |                              |                    |
| 7   | NRCS Runoff        | PR-03S             | 0.958                 | 12.33                    | 5,100                          | 2000                 |                              |                    |
| 8   | Junction           | PR-SITE            | 12.88                 | 12.40                    | 77,786                         |                      |                              |                    |
| 9   | Pond Route         | PR-01SW DET        | 3.636                 | 13.07                    | 49,814                         | 5, 6, 7              |                              |                    |
| 10  | Junction           | PR-SITE-DET        | 4.085                 | 13.02                    | 58,823                         | 5<br>6, 7, 9         | 29.92                        | 31,457             |
|     |                    |                    |                       |                          |                                |                      |                              |                    |

# Hydrograph Report

## EX-01SW


# Hyd. No. 1

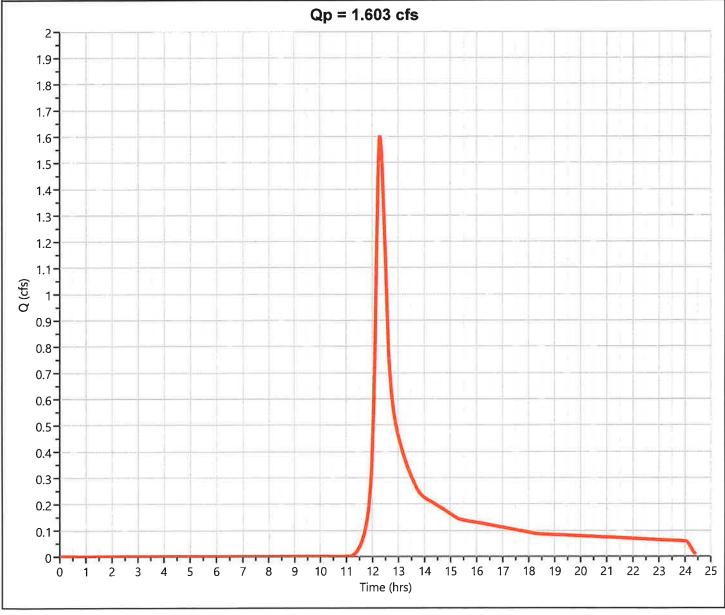
|                 |                        | Peak Flow          | = 4.907 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.40 hrs   |
| Storm Frequency | = 25-yr                | Runoff Volume      | = 31,392 cuft |
| Time Interval   | = 1 min                | Curve Number       | = 55.00*      |
| Drainage Area   | = 5.183 ac             | Time of Conc. (Tc) | = 31.45 min   |
| Tc Method       | = TR55 (See Worksheet) |                    | = NOAA-D      |
| Total Rainfall  | = 6.24 in              | Design Storm       | = 484         |
| Storm Duration  | = 24 hrs               | Shape Factor       | - 404         |

## \* Composite CN Worksheet

DESCRIPTION AREA (ac) CN Woods 55,00

5.183 Weighted CN Method Employed 55.00




EX-02E Hyd. No. 2

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 1.603 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 25-yr                | Time to Peak       | = 12.28 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 8,438 cuft |
| Drainage Area   | = 1.389 ac             | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 20.61 min  |
| Total Rainfall  | = 6.24 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

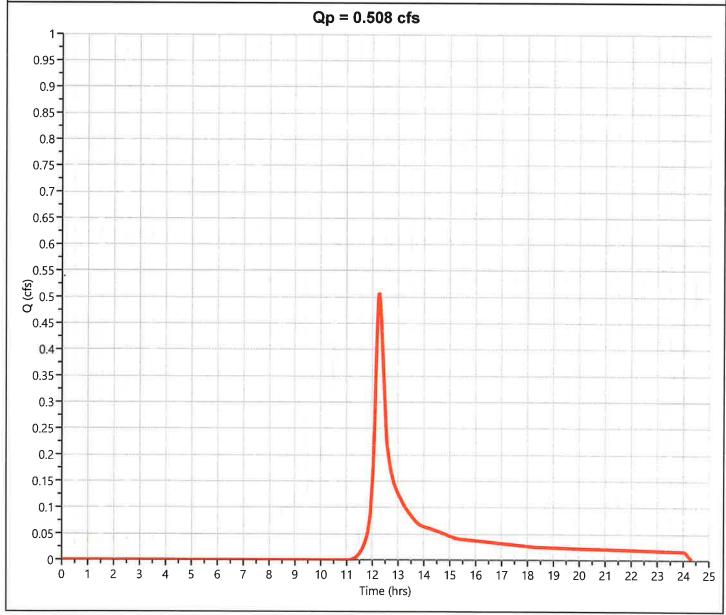
#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 1,389 55,00 Woods

1.389 55.00 Weighted CN Method Employed

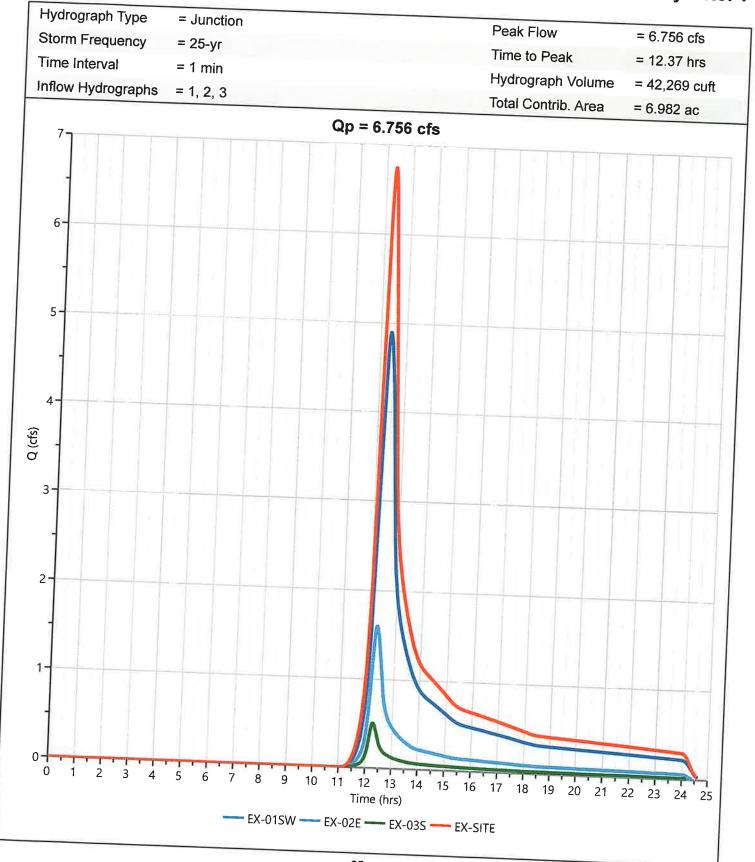


### **EX-03S**


## Hyd. No. 3

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.508 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 25-yr                | Time to Peak       | = 12.25 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 2,439 cuft |
| Drainage Area   | = 0.41 ac              | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.32 min  |
| Total Rainfall  | = 6.24 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

#### \* Composite CN Worksheet


AREA (ac) CN DESCRIPTION 0.41 55,00 Woods

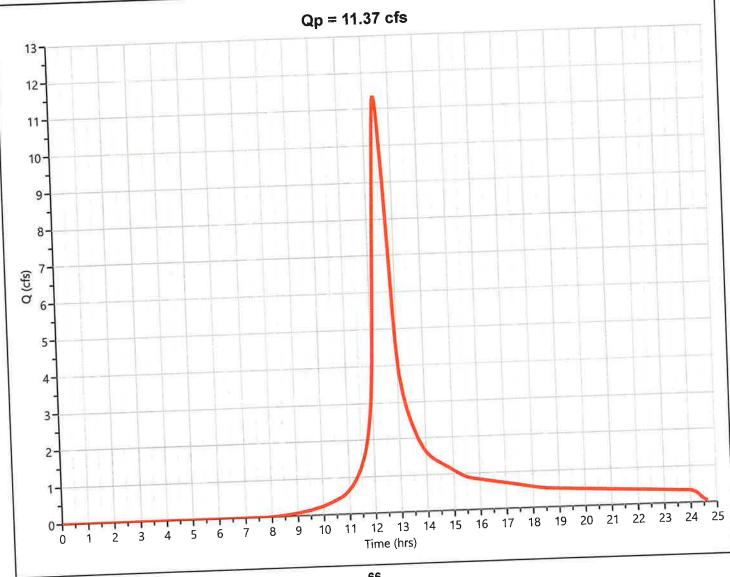
0.41 55.00 Weighted CN Method Employed



#### **EX-SITE**

Hyd. No. 4




# Hydrograph Report

## **PR-01SW**

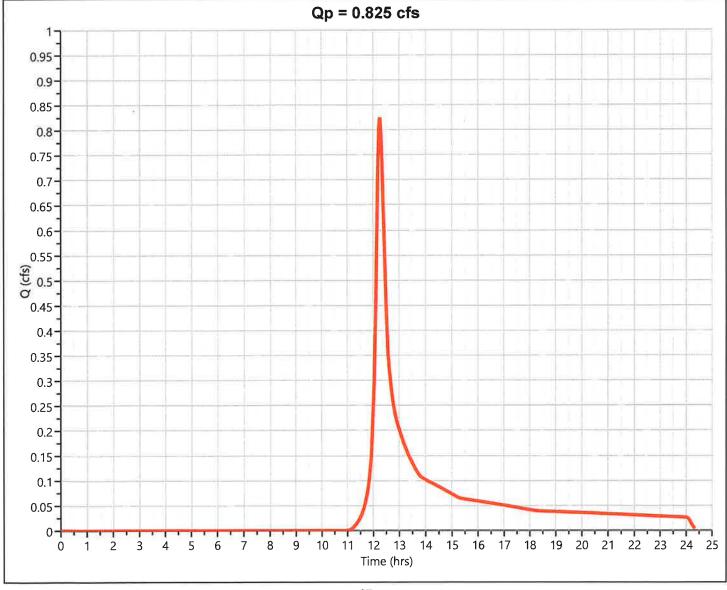
# Hyd. No. 5

|                 |                        | Peak Flow          | = 11.37 cfs      |
|-----------------|------------------------|--------------------|------------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.42 hrs      |
| Storm Frequency | = 25-yr                | Runoff Volume      | = 68,776 cuft    |
| Time Interval   | = 1 min                | Curve Number       | = 72.48*         |
| Drainage Area   | = 5.852 ac             | Time of Conc. (Tc) | = 34.6 min       |
| Tc Method       | = TR55 (See Worksheet) |                    | = NOAA-D         |
| Total Rainfall  | = 6.24 in              | Design Storm       | = 484            |
| Storm Duration  | = 24 hrs               | Shape Factor       | - <del>101</del> |

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 2.095     | 98.00 | Impervious                  |
| 1 395     | 61.00 | Landscape                   |
| 1.277     | 58,00 | Conservation                |
| 1.085     | 55,00 | Woods                       |
| 5.852     | 72.48 | Weighted CN Method Employed |





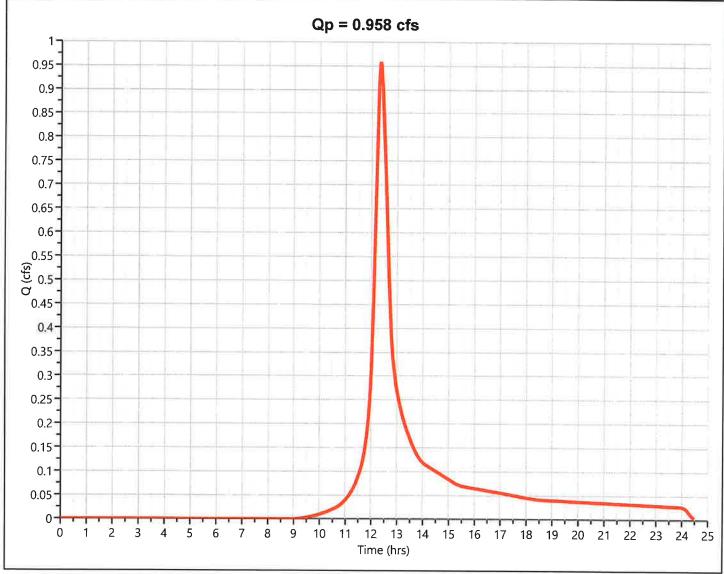

PR-02E Hyd. No. 6

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.825 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 25-yr                | Time to Peak       | = 12.25 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 3,910 cuft |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min  |
| Total Rainfall  | = 6.24 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

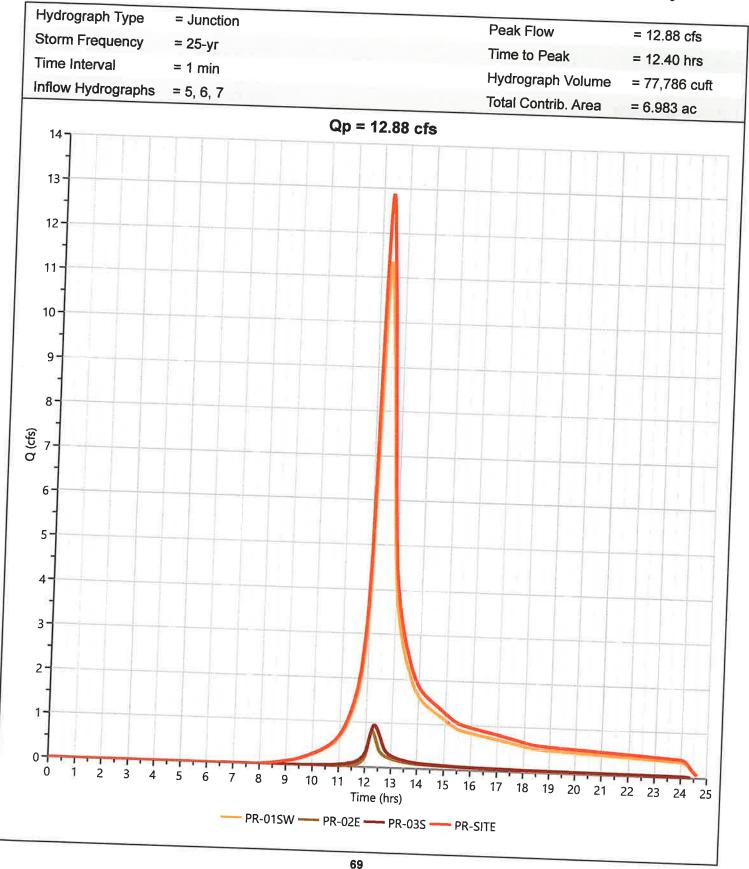
#### \* Composite CN Worksheet

| AREA (ac) | CN    | DESCRIPTION  |
|-----------|-------|--------------|
| 0,016     | 61.00 | Landscape    |
| 0.171     | 58.00 | Conservation |
| 0.44      | 55.00 | Woods        |

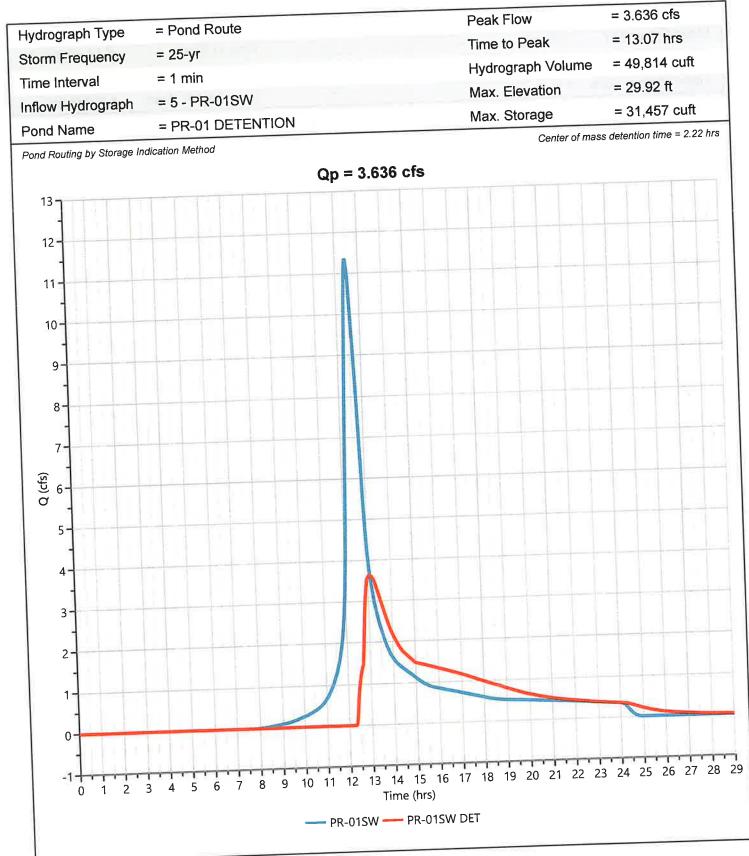
0.627 55.97 Weighted CN Method Employed




PR-03S

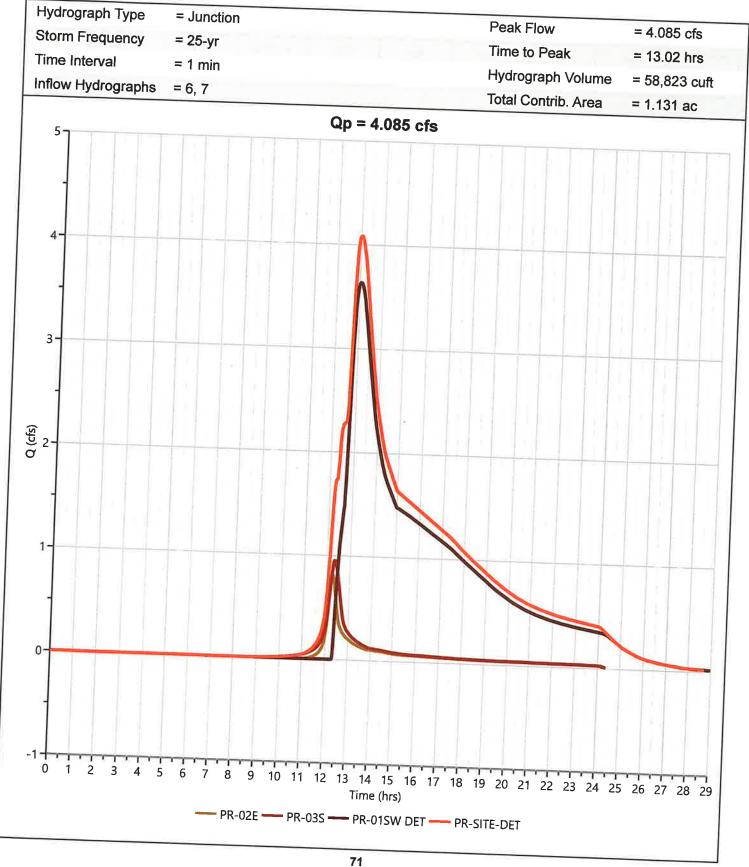

| Hyd. | No. | 7 |
|------|-----|---|
|------|-----|---|

| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |
|-----------------|------------------------|--------------------|--------------|
| Total Rainfall  | = 6.24 in              | Design Storm       | = NOAA-D     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Time Interval   | = 1 min                | Runoff Volume      | = 5,100 cuft |
| Storm Frequency | = 25-yr                | Time to Peak       | = 12.33 hrs  |
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.958 cfs  |


| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0.12      | 98,00 | Impervious                  |
| 0.122     | 61.00 | Landscape                   |
| 0.147     | 58.00 | Conservation                |
| 0.115     | 55,00 | Woods                       |
| 0.504     | 67.57 | Weighted CN Method Employed |



## **PR-SITE**




### PR-01SW DET

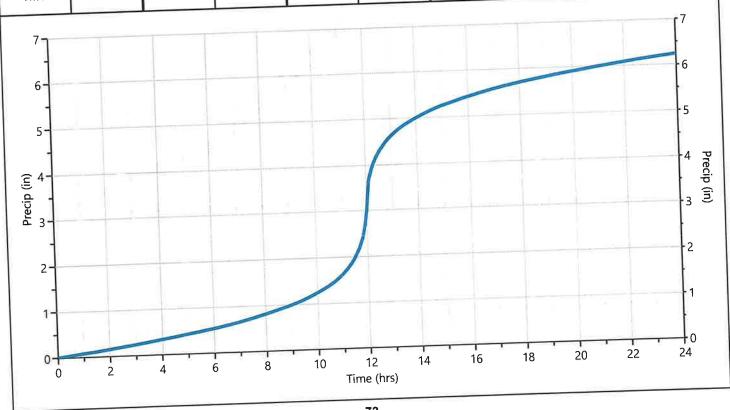




## PR-SITE-DET



# Design Storm Report


Hydrology Studio v 3.0.0.38

10-06-2025

# Storm Distribution: NOAA-D, 24-hr

|                   |      |      |      | Total Rainfal | l Volume (in) |                |       |        |
|-------------------|------|------|------|---------------|---------------|----------------|-------|--------|
| Storm<br>Ouration |      | 0    | 3-уг | 5-yr          | 10-yr         | <b>✓</b> 25-yr | 50-yr | 100-yr |
| uration           | 1-yr | 2-yr | 3-yı |               |               | 224            | 7.04  | 7.90   |
| 24 hrs            | 2,87 | 3.44 | 0.00 | 4.38          | 5.17          | 6.24           | 1.04  | 7.00   |

|               |                |               | Incremental Rainfall Distribution, 25-yr |               |                |               |                |               |                |  |
|---------------|----------------|---------------|------------------------------------------|---------------|----------------|---------------|----------------|---------------|----------------|--|
| Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in)                           | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |  |
| ,             |                | 44.70         | 0.027174                                 | 11.97         | 0.065050       | 12.15         | 0.037709       | 12.33         | 0.019813       |  |
| 11.60         | 0.018824       | 11.78         |                                          | 11.98         | 0.065054       | 12.17         | 0.037709       | 12.35         | 0.019811       |  |
| 11.62         | 0.019812       | 11.80         | 0.027178                                 |               |                | 12.18         | 0.037712       | 12.37         | 0.019813       |  |
| 11.63         | 0.019812       | 11.82         | 0.037709                                 | 12,00         | 0.065049       |               |                | 12.38         | 0.019811       |  |
| 11.65         | 0.019813       | 11.83         | 0.037712                                 | 12.02         | 0.108542       | 12.20         | 0.037709       |               |                |  |
|               |                | 11.85         | 0.037709                                 | 12.03         | 0.108548       | 12.22         | 0.027175       | 12.40         | 0.019814       |  |
| 11.67         | 0.019811       |               | 0.037709                                 | 12.05         | 0.108542       | 12.23         | 0.027174       | 12.42         | 0.018823       |  |
| 11.68         | 0.019813       | 11.87         |                                          |               | 0.108548       | 12.25         | 0.027176       | 12.43         | 0.018825       |  |
| 11.70         | 0.019811       | 11.88         | 0.037711                                 | 12.07         |                |               | 0.027175       | 12.45         | 0.018824       |  |
| 11.72         | 0.027174       | 11.90         | 0.037710                                 | 12.08         | 0.108542       | 12.27         |                |               | 0.018824       |  |
|               | 0.027176       | 11.92         | 0.065053                                 | 12.10         | 0.108548       | 12.28         | 0.027176       | 12.47         |                |  |
| 11.73         |                |               | 0.065050                                 | 12.12         | 0.037709       | 12.30         | 0.027174       | 12.48         | 0.01882        |  |
| 11.75         | 0.027175       | 11.93         |                                          |               | 0.037712       | 12.32         | 0.019812       | 12.50         | 0.018824       |  |
| 11.77         | 0.027176       | 11.95         | 0.065054                                 | 12.13         | 0.007712       |               |                |               |                |  |

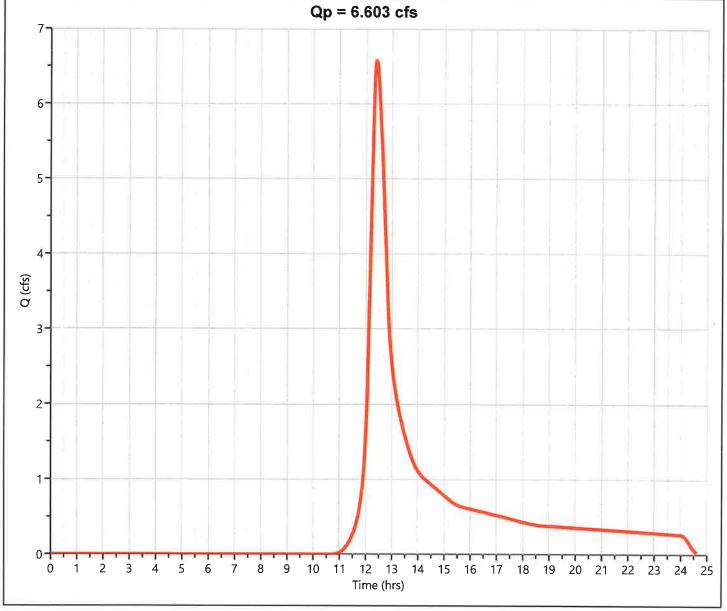


# File: 20250924PARKERS PLACE Hydrology.hys 10-06-2025

# Hydrograph 50-yr Summary Hydrology Studio v 3.0.0,38

| о. Туре       | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|---------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| 1 NRCS Runoff | EX-01SW            | 6.603                 | 12.40                    | 40,704                         |                  |                              |                              |
| 2 NRCS Runoff | EX-02E             | 2.154                 | 12.28                    | 10,941                         | 2002             |                              |                              |
| 3 NRCS Runoff | EX-03S             | 0.681                 | 12.25                    | 3,162                          | 1                |                              |                              |
| 4 Junction    | EX-SITE            | 9.080                 | 12.37                    | 54,807                         | 1, 2, 3          |                              |                              |
| 5 NRCS Runoff | PR-01SW            | 13.77                 | 12.42                    | 83,150                         | *****            |                              |                              |
| 6 NRCS Runoff | PR-02E             | 1.095                 | 12.25                    | 5,043                          | -                |                              | mt                           |
| 7 NRCS Runoff | PR-03S             | 1.183                 | 12.33                    | 6,265                          | 344              |                              |                              |
| 8 Junction    | PR-SITE            | 15.67                 | 12.40                    | 94,458                         | 5, 6, 7          |                              | own r                        |
| 9 Pond Route  | PR-01SW DET        | 5.198                 | 12.97                    | 64,010                         | 5                | 30.34                        | 35,927                       |
| 10 Junction   | PR-SITE-DET        | 5.816                 | 12.88                    | 75,319                         | 6, 7, 9          |                              |                              |
|               |                    |                       |                          |                                |                  |                              |                              |

EX-01SW


# Hyd. No. 1

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 6.603 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 50-yr                | Time to Peak       | = 12.40 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 40,704 cuft |
| Drainage Area   | = 5.183 ac             | Curve Number       | = 55.00*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 31.45 min   |
| Total Rainfall  | = 7.04 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |

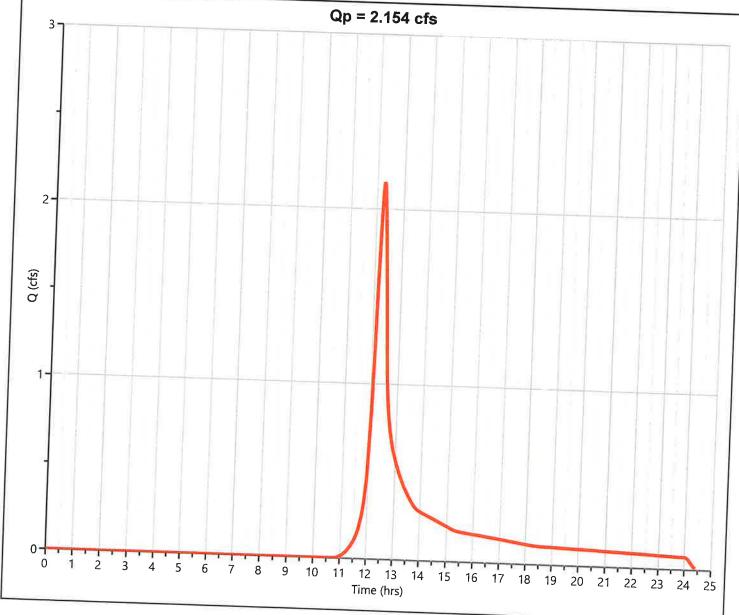
#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 5,183 55,00 Woods

5.183 55.00 Weighted CN Method Employed



## **EX-02E**


# Hyd. No. 2

| * Composite CN Workshee | t                      | Shape Factor       | = 484         |
|-------------------------|------------------------|--------------------|---------------|
| Storm Duration          | = 24 hrs               |                    | = NOAA-D      |
|                         | = 7.04 in              | Design Storm       |               |
| Total Rainfall          |                        | Time of Conc. (Tc) | = 20.61 min   |
| Tc Method               | = TR55 (See Worksheet) | Curve Number       | = 55.00*      |
| Drainage Area           | = 1.389 ac             |                    | = 10,941 cuft |
| Time Interval           | = 1 min                | Runoff Volume      | = 12.28 hrs   |
|                         | = 50-yr                | Time to Peak       |               |
| Storm Frequency         |                        | Peak Flow          | = 2.154 cfs   |
| Hydrograph Type         | = NRCS Runoff          |                    |               |

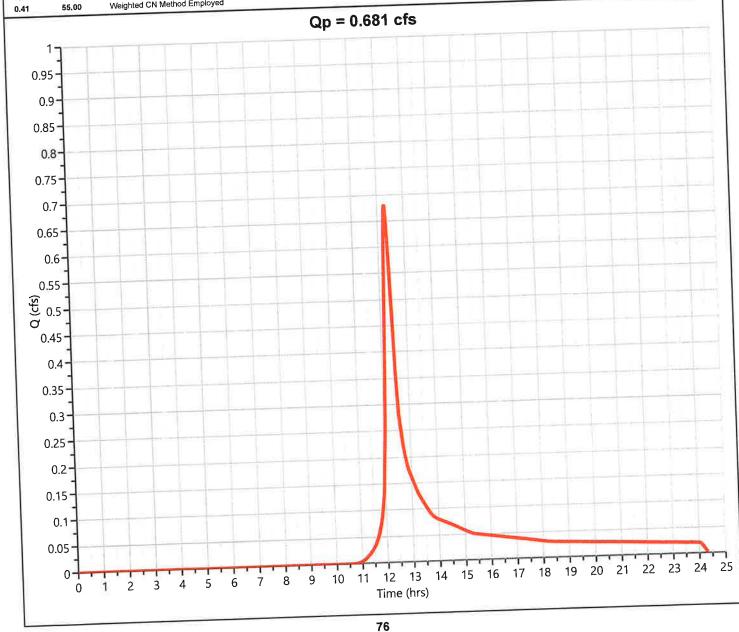
 AREA (ac)
 CN
 DESCRIPTION

 1,389
 55,00
 Woods

 1,389
 55,00
 Weighted CN Method Employed



### **EX-03S**


# Hyd. No. 3

|                 | <u>.</u>               | Peak Flow          | = 0.681 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Hydrograph Type | = NRCS Runoff          | Time to Peak       | = 12.25 hrs  |
| Storm Frequency | = 50-yr                | Runoff Volume      | = 3,162 cuft |
| Time Interval   | = 1 min                | Curve Number       | = 55.00*     |
| Drainage Area   | = 0.41 ac              | Time of Conc. (Tc) | = 18.32 min  |
| Tc Method       | = TR55 (See Worksheet) | Design Storm       | = NOAA-D     |
| Total Rainfall  | = 7.04 in              | Shape Factor       | = 484        |
| Storm Duration  | = 24 hrs               | 5.1.apo 1 5.5.     |              |

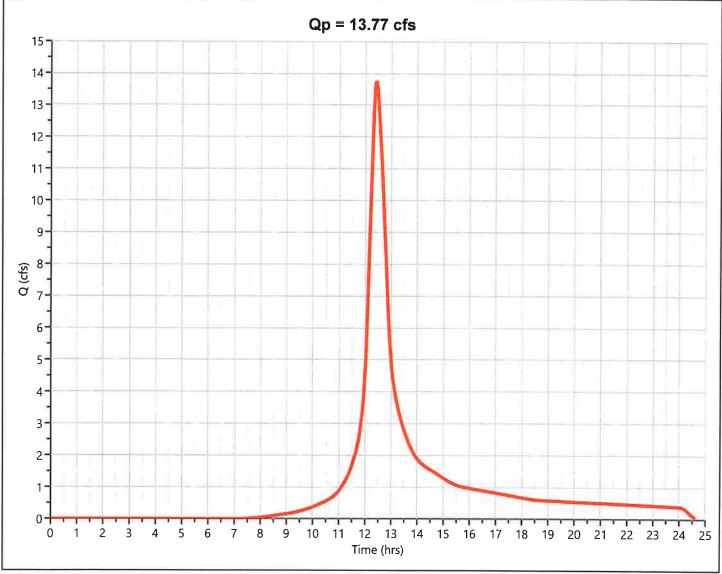
## \* Composite CN Worksheet

DESCRIPTION AREA (ac) CN Woods

0,41 55,00 Weighted CN Method Employed



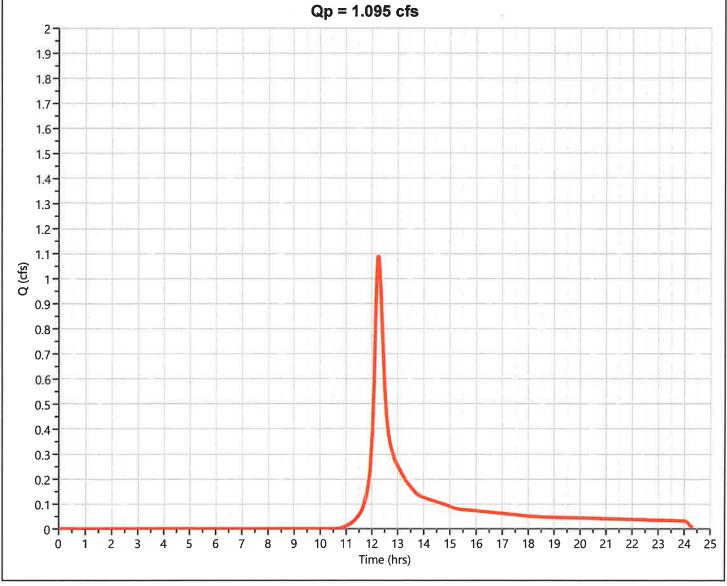
EX-SITE Hyd. No. 4


| Hydrograph Type    | = Junction |                   | Peak Flow           | = 9.080 cfs   |
|--------------------|------------|-------------------|---------------------|---------------|
| Storm Frequency    | = 50-yr    |                   | Time to Peak        | = 12.37 hrs   |
| Time Interval      | = 1 min    |                   | Hydrograph Volume   | = 54,807 cuft |
| inflow Hydrographs | = 1, 2, 3  |                   | Total Contrib. Area | = 6.982 ac    |
|                    |            | Qp = 9.080 cfs    |                     |               |
| 10 <b>7</b>        |            |                   |                     |               |
| 1                  |            |                   |                     |               |
|                    |            |                   |                     |               |
| 9                  |            |                   |                     |               |
| -                  |            |                   |                     |               |
| 8-                 |            |                   |                     |               |
|                    |            |                   |                     |               |
|                    |            |                   |                     |               |
| 7-                 |            |                   |                     |               |
| 4                  |            |                   |                     |               |
| 6-                 |            |                   |                     |               |
|                    |            |                   |                     |               |
|                    |            |                   |                     |               |
| ( <del>S)</del> 5- |            |                   |                     |               |
| ° ]                |            |                   |                     |               |
|                    |            |                   |                     |               |
| 4-                 |            |                   |                     |               |
| 1                  |            |                   |                     |               |
| 3 -                |            |                   |                     |               |
|                    |            |                   |                     |               |
|                    |            |                   |                     |               |
| 2                  |            |                   |                     |               |
| -                  |            |                   |                     |               |
| 1-                 |            |                   |                     |               |
|                    |            |                   |                     |               |
|                    |            |                   |                     |               |
| 0 1 2 3            | 4 5 6 7 8  | 9 10 11 12 13 14  | 15 16 17 18 19 20   | 21 22 23 24   |
| 0 1 2 3            | . 5 5 , 6  | Time (hrs)        |                     |               |
|                    | EX-0       | 1SW EX-02E EX-03S | EX-SITE             |               |
|                    |            |                   |                     |               |

PR-01SW

# Hyd. No. 5

| = NRCS Runoff          | Peak Flow                                                               | = 13.77 cfs                                                                                                                         |
|------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| = 50-yr                | Time to Peak                                                            | = 12.42 hrs                                                                                                                         |
| = 1 min                | Runoff Volume                                                           | = 83,150 cuft                                                                                                                       |
| = 5.852 ac             | Curve Number                                                            | = 72.48*                                                                                                                            |
| = TR55 (See Worksheet) | Time of Conc. (Tc)                                                      | = 34.6 min                                                                                                                          |
| = 7.04 in              | Design Storm                                                            | = NOAA-D                                                                                                                            |
| = 24 hrs               | Shape Factor                                                            | = 484                                                                                                                               |
|                        | = 50-yr<br>= 1 min<br>= 5.852 ac<br>= TR55 (See Worksheet)<br>= 7.04 in | = 50-yr Time to Peak = 1 min Runoff Volume = 5.852 ac Curve Number = TR55 (See Worksheet) Time of Conc. (Tc) = 7.04 in Design Storm |


| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 2,095     | 98,00 | Impervious                  |
| 1.395     | 61,00 | Landscape                   |
| 1,277     | 58,00 | Conservation                |
| 1.085     | 55,00 | Woods                       |
| 5.852     | 72.48 | Weighted CN Method Employed |

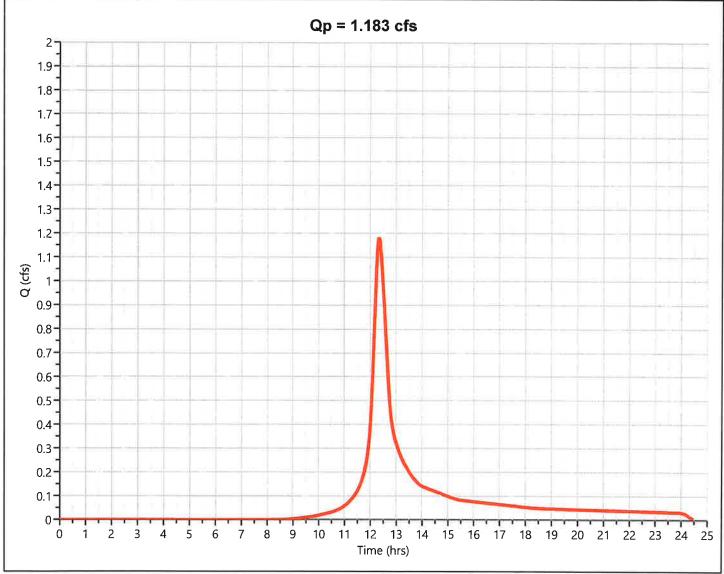


PR-02E Hyd. No. 6

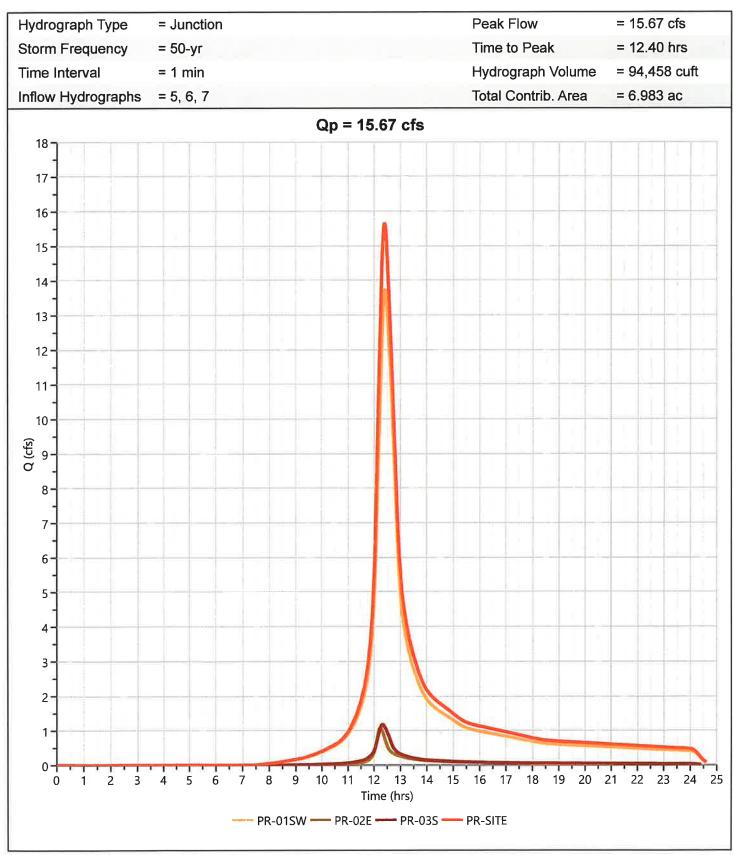
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 1.095 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 50-yr                | Time to Peak       | = 12.25 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 5,043 cuft |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min  |
| Total Rainfall  | = 7.04 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0.016     | 61,00 | Landscape                   |
| 0.171     | 58.00 | Conservation                |
| 0.44      | 55.00 | Woods                       |
| 0.627     | 55.97 | Weighted CN Method Employed |




PR-03S Hyd. No. 7

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 1.183 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 50-yr                | Time to Peak       | = 12.33 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 6,265 cuft |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Total Rainfall  | = 7.04 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |


#### \* Composite CN Worksheet

| AREA (ac) | CN    | DESCRIPTION  |
|-----------|-------|--------------|
| 0.12      | 98.00 | Impervious   |
| 0.122     | 61.00 | Landscape    |
| 0.147     | 58,00 | Conservation |
| 0.115     | 55.00 | Woods        |
|           |       |              |

0.504 67.57 Weighted CN Method Employed



PR-SITE Hyd. No. 8



## **PR-01SW DET**

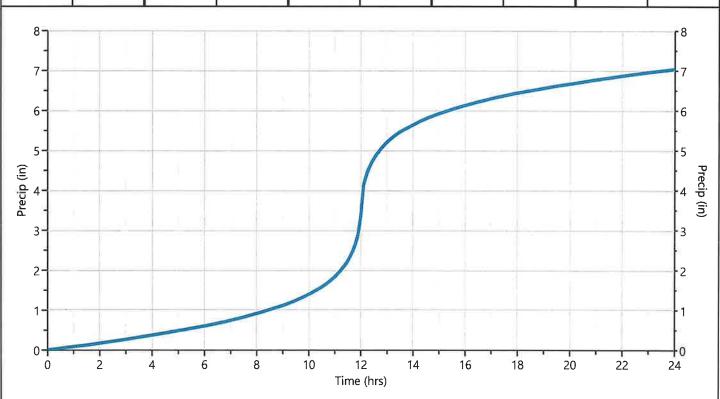
Hyd. No. 9

| łydrograph Type           | = Pond Route                                      | Peak Flow            | = 5.198 cfs             |
|---------------------------|---------------------------------------------------|----------------------|-------------------------|
| Storm Frequency           | = 50-yr                                           | Time to Peak         | = 12.97 hrs             |
| ime Interval              | = 1 min                                           | Hydrograph Volume    | = 64,010 cuft           |
| nflow Hydrograph          | = 5 - PR-01SW                                     | Max. Elevation       | = 30.34 ft              |
| ond Name                  | = PR-01 DETENTION                                 | Max. Storage         | = 35,927 cuft           |
| ond Routing by Storage In | dication Method                                   | Center of mass       | s detention time = 1.97 |
|                           | <b>Qp = 5.198 cfs</b>                             |                      |                         |
| 157                       |                                                   |                      |                         |
| 14                        |                                                   |                      |                         |
| -                         |                                                   |                      |                         |
| 13                        |                                                   |                      |                         |
| 12                        |                                                   |                      |                         |
|                           |                                                   |                      |                         |
| 11 -                      |                                                   |                      |                         |
| 10                        |                                                   |                      |                         |
| 9                         |                                                   |                      |                         |
| -                         |                                                   |                      |                         |
| 8-                        |                                                   |                      |                         |
| 7                         |                                                   |                      |                         |
| 6                         |                                                   |                      |                         |
| -                         |                                                   |                      |                         |
| 5                         |                                                   |                      |                         |
| 4                         |                                                   |                      |                         |
| -                         |                                                   |                      |                         |
| 3-                        |                                                   |                      |                         |
| 2                         |                                                   |                      |                         |
| 1                         |                                                   |                      |                         |
| 4                         |                                                   |                      |                         |
| 0                         |                                                   |                      |                         |
| -1                        |                                                   | <del></del>          |                         |
| 0 1 2 3                   | 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br>Time (hrs) | 18 19 20 21 22 23 24 | 25 26 27 28             |
|                           |                                                   | <b>T</b>             |                         |



PR-SITE-DET Hyd. No. 10

| = Junction                                  | Peak Flow                                     | = 5.816 cfs   |
|---------------------------------------------|-----------------------------------------------|---------------|
| = 50-yr                                     | Time to Peak                                  | = 12.88 hrs   |
| = 1 min                                     | Hydrograph Volume                             | = 75,319 cuft |
| = 6, 7                                      | Total Contrib. Area                           | = 1.131 ac    |
| Qp = 5.816 cf                               | is                                            |               |
|                                             |                                               |               |
| Λ                                           |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
|                                             |                                               |               |
| 5 6 7 8 9 10 11 12 13 14 15 1<br>Time (hrs) | 16 17 18 19 20 21 22 23 2 <sup>2</sup>        | 4 25 26 27 28 |
|                                             |                                               |               |
|                                             | = 50-yr<br>= 1 min<br>= 6, 7<br>Qp = 5.816 cf | = 50-yr       |


# Design Storm Report

Hydrology Studio v 3.0.0.38 10-06-2025

# Storm Distribution: NOAA-D, 24-hr

| Storm<br>Duration | Total Rainfall Volume (in) |      |      |      |       |       |                |        |  |
|-------------------|----------------------------|------|------|------|-------|-------|----------------|--------|--|
|                   | 1-yr                       | 2-yr | 3-yr | 5-yr | 10-yr | 25-уг | <b>✓</b> 50-yr | 100-yr |  |
| 24 hrs            | 2.87                       | 3.44 | 0.00 | 4.38 | 5.17  | 6.24  | 7.04           | 7.90   |  |

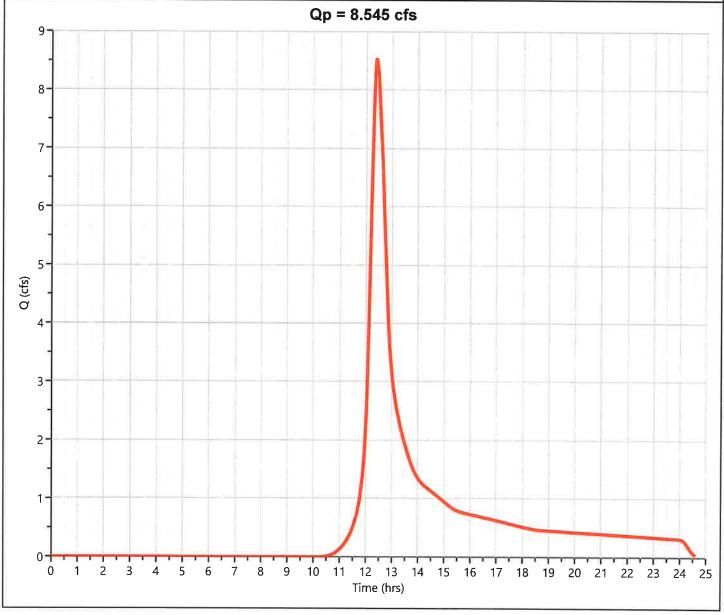
|               | Incremental Rainfall Distribution, 50-yr |               |                |               |                |               |                |               |                |
|---------------|------------------------------------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in)                           | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.60         | 0.021237                                 | 11.78         | 0.030658       | 11.97         | 0.073390       | 12.15         | 0.042544       | 12.33         | 0.022353       |
| 11.62         | 0.022352                                 | 11.80         | 0.030662       | 11.98         | 0.073394       | 12.17         | 0.042544       | 12.35         | 0.022351       |
| 11.63         | 0.022352                                 | 11.82         | 0.042544       | 12.00         | 0.073389       | 12.18         | 0.042546       | 12.37         | 0.022353       |
| 11.65         | 0.022353                                 | 11.83         | 0.042546       | 12.02         | 0.122458       | 12.20         | 0.042544       | 12.38         | 0.022351       |
| 11.67         | 0.022351                                 | 11.85         | 0.042544       | 12.03         | 0.122464       | 12.22         | 0.030659       | 12.40         | 0.022353       |
| 11.68         | 0.022353                                 | 11.87         | 0.042544       | 12.05         | 0.122458       | 12.23         | 0.030658       | 12.42         | 0.021237       |
| 11.70         | 0.022351                                 | 11.88         | 0.042546       | 12.07         | 0.122464       | 12.25         | 0.030660       | 12.43         | 0.021238       |
| 11.72         | 0.030658                                 | 11.90         | 0.042544       | 12.08         | 0.122458       | 12.27         | 0.030659       | 12.45         | 0.021237       |
| 11.73         | 0.030660                                 | 11.92         | 0.073394       | 12.10         | 0.122465       | 12.28         | 0.030660       | 12.47         | 0.021237       |
| 11.75         | 0.030658                                 | 11.93         | 0.073390       | 12.12         | 0.042544       | 12.30         | 0.030658       | 12.48         | 0.021238       |
| 11.77         | 0.030660                                 | 11.95         | 0.073394       | 12.13         | 0.042547       | 12.32         | 0.022351       | 12.50         | 0.021236       |



# Hydrograph 100-yr Summary

|    | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximun<br>Storage<br>(cuft) |
|----|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| 1  | NRCS Runoff        | EX-01SW            | 8.545                 | 12.40                    | 51,435                         | ****             |                              |                              |
| 2  | NRCS Runoff        | EX-02E             | 2.784                 | 12.28                    | 13,826                         | 1000             |                              |                              |
| 3  | NRCS Runoff        | EX-03S             | 0.879                 | 12.25                    | 3,996                          | -                |                              |                              |
| 4  | Junction           | EX-SITE            | 11.74                 | 12.37                    | 69,257                         | 1, 2, 3          |                              |                              |
| 5  | NRCS Runoff        | PR-01SW            | 16.38                 | 12.42                    | 99,029                         |                  |                              |                              |
| 6  | NRCS Runoff        | PR-02E             | 1.403                 | 12.25                    | 6,346                          | 1200             |                              |                              |
| 7  | NRCS Runoff        | PR-03S             | 1.432                 | 12.33                    | 7,565                          | 1900             |                              |                              |
| 8  | Junction           | PR-SITE            | 18.74                 | 12.40                    | 112,940                        | 5, 6, 7          |                              |                              |
| 9  | Pond Route         | PR-01SW DET        | 8.316                 | 12.85                    | 79,712                         | 5                | 30.75                        | 40,314                       |
| 10 | Junction           | PR-SITE-DET        | 9.147                 | 12.83                    | 93,622                         | 6, 7, 9          |                              |                              |
|    |                    |                    |                       |                          |                                |                  |                              |                              |

## **EX-01SW**


# Hyd. No. 1

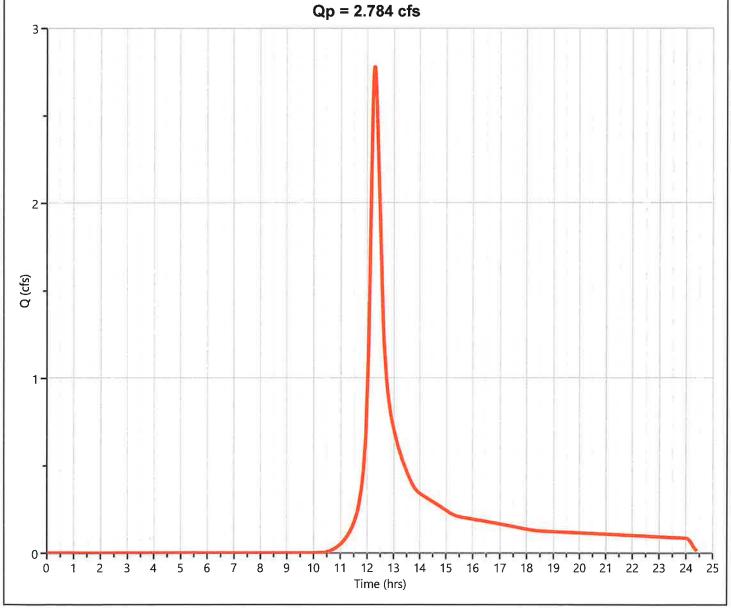
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 8.545 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 100-yr               | Time to Peak       | = 12.40 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 51,435 cuft |
| Drainage Area   | = 5.183 ac             | Curve Number       | = 55.00*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 31.45 min   |
| Total Rainfall  | = 7.90 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |

#### \* Composite CN Worksheet

AREA (ac) CN DESCRIPTION 5,183 55.00 Woods

5.183 55.00 Weighted CN Method Employed




EX-02E Hyd. No. 2

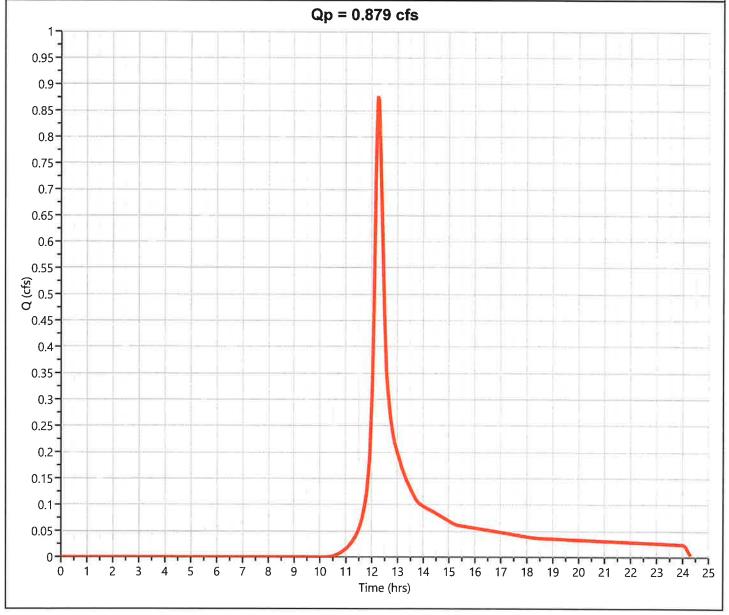
| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 2.784 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 100-yr               | Time to Peak       | = 12.28 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 13,826 cuft |
| Drainage Area   | = 1.389 ac             | Curve Number       | = 55.00*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 20.61 min   |
| Total Rainfall  | = 7.90 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |

#### \* Composite CN Worksheet

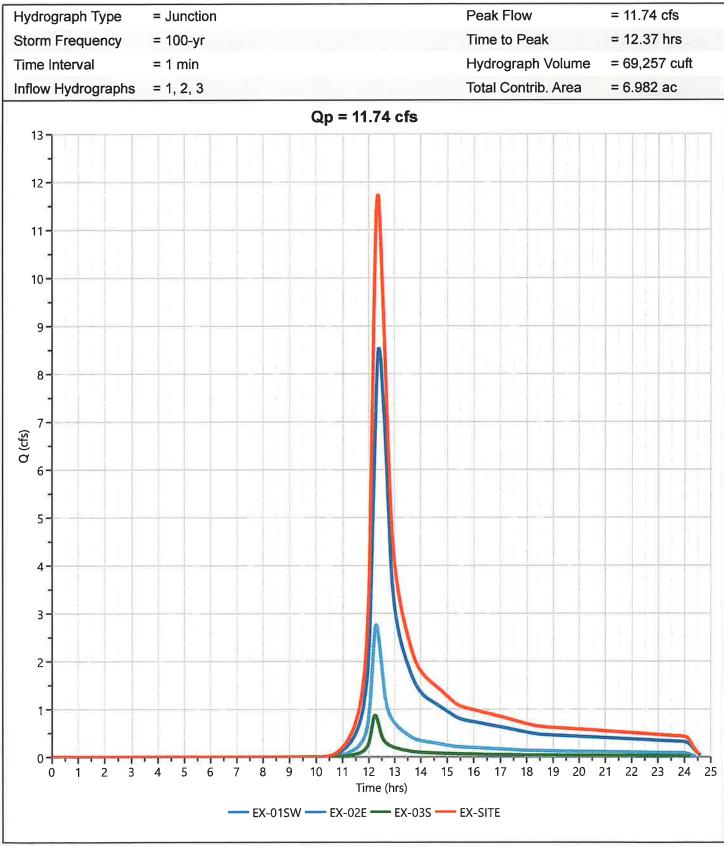
AREA (ac) CN DESCRIPTION 1,389 55,00 Woods

1.389 55.00 Weighted CN Method Employed




EX-03S Hyd. No. 3

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 0.879 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 100-yr               | Time to Peak       | = 12.25 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 3,996 cuft |
| Drainage Area   | = 0.41 ac              | Curve Number       | = 55.00*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.32 min  |
| Total Rainfall  | = 7.90 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |


#### \* Composite CN Worksheet

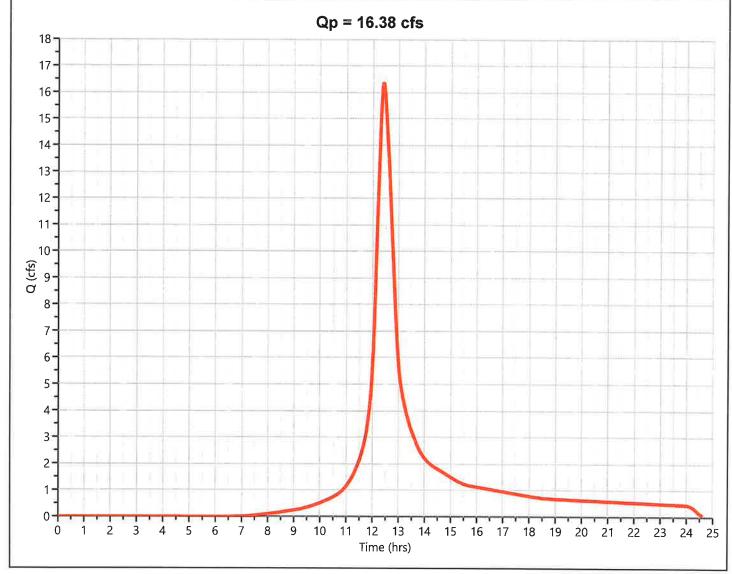
AREA (ac) CN DESCRIPTION 0.41 55.00 Woods

0.41 55.00 Weighted CN Method Employed



EX-SITE Hyd. No. 4



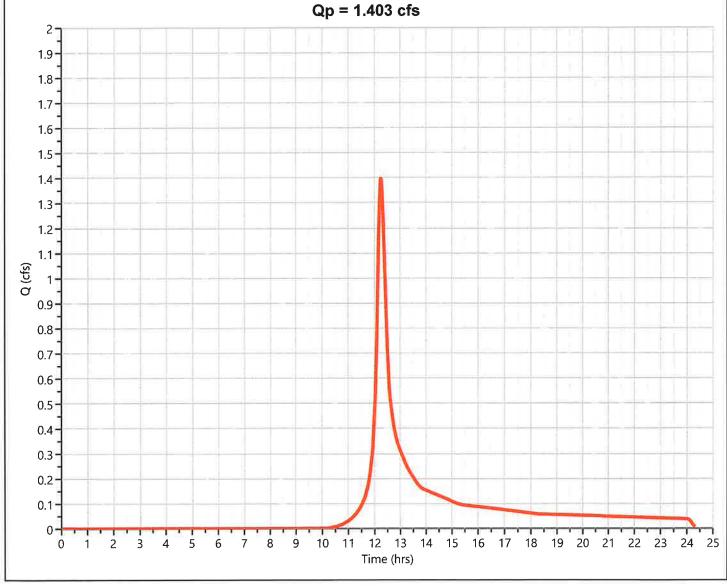

## **PR-01SW**

## Hyd. No. 5

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 16.38 cfs   |
|-----------------|------------------------|--------------------|---------------|
| Storm Frequency | = 100-yr               | Time to Peak       | = 12.42 hrs   |
| Time Interval   | = 1 min                | Runoff Volume      | = 99,029 cuft |
| Drainage Area   | = 5.852 ac             | Curve Number       | = 72.48*      |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 34.6 min    |
| Total Rainfall  | = 7.90 in              | Design Storm       | = NOAA-D      |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484         |

## \* Composite CN Worksheet

| AREA (ac) | CN    | DESCRIPTION               |
|-----------|-------|---------------------------|
| 2.095     | 98.00 | Impervious                |
| 1.395     | 61,00 | Landscape                 |
| 1,277     | 58.00 | Conservation              |
| 1,085     | 55.00 | Woods                     |
| 5.852     | 72.48 | Weighted CN Method Employ |

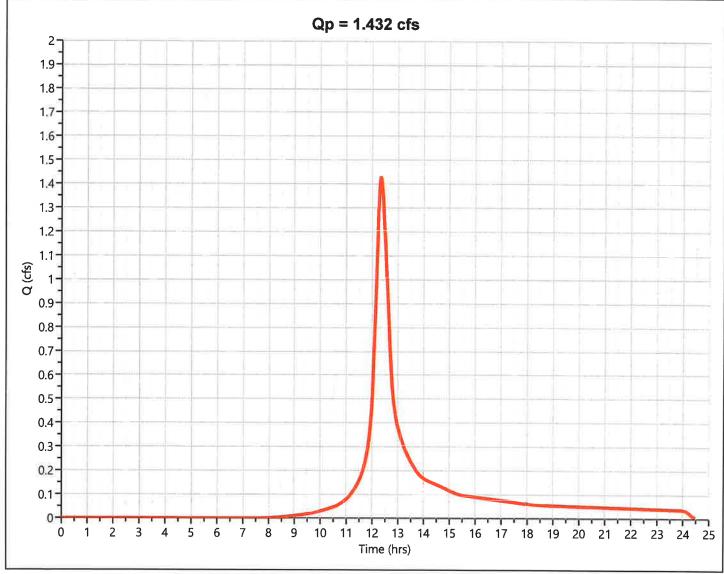



PR-02E Hyd. No. 6

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 1.403 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 100-yr               | Time to Peak       | = 12.25 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 6,346 cuft |
| Drainage Area   | = 0.627 ac             | Curve Number       | = 55.97*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 18.27 min  |
| Total Rainfall  | = 7.90 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

## \* Composite CN Worksheet

| AREA (ac) | CN    | DESCRIPTION                 |
|-----------|-------|-----------------------------|
| 0,016     | 61.00 | Landscape                   |
| 0.171     | 58.00 | Conservation                |
| 0.44      | 55.00 | Woods                       |
| 0.627     | 55.97 | Weighted CN Method Employed |




PR-03S Hyd. No. 7

| Hydrograph Type | = NRCS Runoff          | Peak Flow          | = 1.432 cfs  |
|-----------------|------------------------|--------------------|--------------|
| Storm Frequency | = 100-yr               | Time to Peak       | = 12.33 hrs  |
| Time Interval   | = 1 min                | Runoff Volume      | = 7,565 cuft |
| Drainage Area   | = 0.504 ac             | Curve Number       | = 67.57*     |
| Tc Method       | = TR55 (See Worksheet) | Time of Conc. (Tc) | = 26.4 min   |
| Total Rainfall  | = 7.90 in              | Design Storm       | = NOAA-D     |
| Storm Duration  | = 24 hrs               | Shape Factor       | = 484        |

### \* Composite CN Worksheet

| AREA (ac) | CN    | DESCRIPTION               |
|-----------|-------|---------------------------|
| 0.12      | 98.00 | Impervious                |
| 0.122     | 61.00 | Landscape                 |
| 0.147     | 58.00 | Conservation              |
| 0.115     | 55.00 | Woods                     |
| 0.504     | 67.57 | Weighted CN Method Employ |



PR-SITE Hyd. No. 8

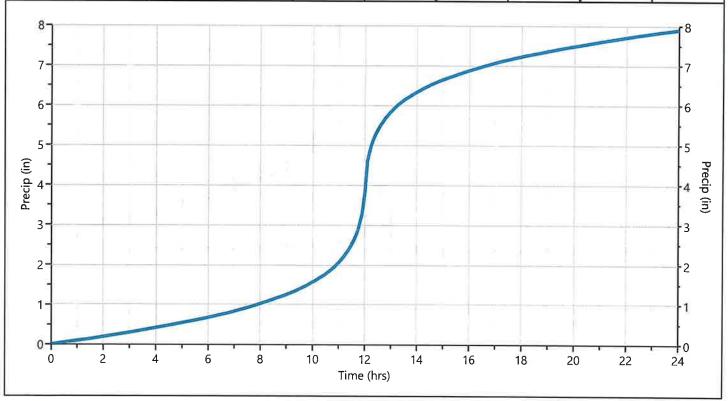
| Hydrograph Type      | = Junction     |                  | Peak Flow                      | = 18.74 cfs    |
|----------------------|----------------|------------------|--------------------------------|----------------|
| Storm Frequency      | = 100-yr       |                  | Time to Peak                   | = 12.40 hrs    |
| Time Interval        | = 1 min        |                  | Hydrograph Volume              | = 112,940 cuft |
| Inflow Hydrographs   | = 5, 6, 7      |                  | Total Contrib. Area = 6.983 ac |                |
|                      | Qp             | = 18.74 cfs      |                                |                |
| 217                  |                |                  |                                |                |
| 20                   |                |                  |                                |                |
| 19                   |                |                  |                                |                |
| 2-                   |                |                  |                                |                |
| 18-                  |                |                  |                                |                |
| 17                   |                |                  |                                |                |
| 16 -                 |                |                  |                                |                |
| 15 -                 |                | 11               |                                | 1 1 1 1 1      |
| 14                   |                |                  |                                |                |
| 13                   |                |                  |                                |                |
| 12                   |                |                  |                                |                |
| + ! ! ! !            |                |                  |                                |                |
| 윤11 -<br>건<br>건 10 - |                |                  |                                |                |
| ♥ <sub>10</sub>      |                |                  |                                |                |
| 9-                   |                |                  |                                |                |
| 8-                   |                |                  |                                | 1              |
| 7-                   |                |                  |                                |                |
| 6                    |                |                  |                                |                |
| 7 <del>4</del>       |                |                  |                                |                |
| 5                    |                |                  |                                |                |
| 4-                   |                | 1 1              |                                |                |
| 3                    |                |                  |                                |                |
| 2                    |                | /                |                                |                |
| 1-                   |                |                  |                                |                |
|                      |                |                  |                                |                |
| 0 1 2 3              | 4 5 6 7 8 9 10 |                  | 5 16 17 18 19 20               | 21 22 23 24    |
|                      |                | Time (hrs)       |                                |                |
|                      | PR-01SW —— PI  | R-02E — PR-03S — | PR-SITE                        |                |

PR-01SW DET Hyd. No. 9

| Hydrograph Type                                            | = Pond Route                     | Peak Flow            | = 8.316 cfs               |
|------------------------------------------------------------|----------------------------------|----------------------|---------------------------|
| Storm Frequency                                            | = 100-yr                         | Time to Peak         | = 12.85 hrs               |
| Time Interval                                              | = 1 min                          | Hydrograph Volume    | = 79,712 cuft             |
| nflow Hydrograph                                           | = 5 - PR-01SW                    | Max. Elevation       | = 30.75 ft                |
| ond Name                                                   | = PR-01 DETENTION                | Max. Storage         | = 40,314 cuft             |
| Pond Routing by Storage Ir                                 | dication Method                  |                      | s detention time = 1.79 h |
|                                                            | Qp = 8.316 cfs                   |                      |                           |
| 18 ]                                                       |                                  |                      |                           |
| 17-                                                        |                                  |                      |                           |
| 16-                                                        |                                  |                      |                           |
| 4                                                          |                                  |                      |                           |
| 15                                                         |                                  |                      |                           |
| 14                                                         |                                  |                      |                           |
| 13                                                         |                                  |                      |                           |
| 12                                                         |                                  |                      |                           |
| -                                                          |                                  |                      |                           |
| 11-                                                        |                                  |                      |                           |
| 10-                                                        |                                  |                      |                           |
| <u>ş</u> 9-                                                |                                  |                      |                           |
| O 8 (cts)                                                  |                                  |                      |                           |
| 4                                                          |                                  |                      |                           |
| 7                                                          |                                  |                      |                           |
| 6                                                          |                                  |                      |                           |
| 5-                                                         |                                  |                      |                           |
| 4-                                                         |                                  |                      |                           |
| 3                                                          |                                  |                      |                           |
| -                                                          |                                  |                      |                           |
| 2                                                          |                                  |                      |                           |
| 1-                                                         |                                  |                      |                           |
| 0                                                          |                                  |                      |                           |
| -1<br>-1 <del>                                      </del> | <del></del>                      |                      |                           |
| 0 1 2 3                                                    | 4 5 6 7 8 9 10 11 12 13 14 15 16 | 17 18 19 20 21 22 23 | 24 25 26 27 2             |
|                                                            | Time (hrs)                       |                      |                           |

PR-SITE-DET Hyd. No. 10

| lydrograph Type   | = Junction     |                        | Peak Flow           | = 9.147 cfs   |
|-------------------|----------------|------------------------|---------------------|---------------|
| torm Frequency    | = 100-yr       |                        | Time to Peak        | = 12.83 hrs   |
| ime Interval      | = 1 min        |                        | Hydrograph Volume   | = 93,622 cuft |
| nflow Hydrographs | = 6, 7         |                        | Total Contrib. Area | = 1.131 ac    |
|                   |                | Qp = 9.147 cfs         |                     |               |
| 10 7              |                |                        |                     |               |
| -                 |                |                        |                     |               |
| 9-                |                |                        |                     |               |
|                   |                | 1                      |                     |               |
| 8-                |                |                        |                     |               |
|                   |                |                        |                     |               |
|                   |                |                        |                     |               |
| 7-                |                |                        |                     |               |
| 1                 |                |                        |                     |               |
| 6-                |                |                        |                     |               |
| 4                 |                |                        |                     |               |
| 5-                |                |                        |                     |               |
| (69)              |                | 1 1                    |                     |               |
| 4-                |                |                        |                     |               |
|                   |                |                        |                     |               |
|                   |                |                        |                     |               |
| 3                 |                |                        |                     |               |
| 4                 |                |                        |                     |               |
| 2-                |                |                        |                     |               |
|                   |                |                        |                     |               |
| 1-                |                |                        |                     |               |
|                   |                |                        |                     |               |
| 0-                |                |                        |                     |               |
|                   |                |                        |                     |               |
|                   |                |                        |                     |               |
| 0 1 2 3           | 4 5 6 7 8 9 10 | 11 12 13 14 15 16 1    | 7 18 19 20 21 22 23 | 3 24 25 26 27 |
|                   |                | Time (hrs)             |                     |               |
|                   | — PR-02E —     | PR-03S — PR-01SW DET — | PR-SITE-DET         |               |


## Design Storm Report

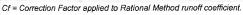
Hydrology Studio v 3.0.0.38 10-06-2025

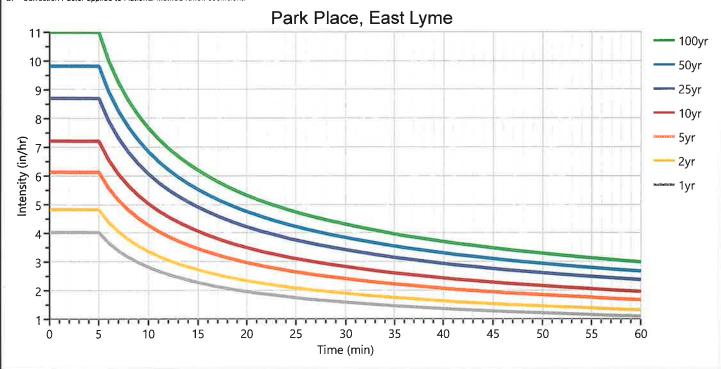
## Storm Distribution: NOAA-D, 24-hr

| Storm    | Total Rainfall Volume (in) |      |      |      |       |       |       |                 |  |
|----------|----------------------------|------|------|------|-------|-------|-------|-----------------|--|
| Duration | 1-yr                       | 2-yr | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | <b>✓</b> 100-yr |  |
| 24 hrs   | 2.87                       | 3.44 | 0.00 | 4,38 | 5.17  | 6.24  | 7.04  | 7.90            |  |

|               |                |               | Incren         | nental Rainfa | II Distribution, | 100-уг        |                |               |                |
|---------------|----------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in)   | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.60         | 0.023831       | 11.78         | 0.034404       | 11.97         | 0.082356         | 12.15         | 0.047741       | 12.33         | 0.025084       |
| 11.62         | 0.025083       | 11.80         | 0.034408       | 11.98         | 0.082360         | 12.17         | 0.047741       | 12.35         | 0.025082       |
| 11.63         | 0.025082       | 11.82         | 0.047741       | 12.00         | 0.082354         | 12.18         | 0.047744       | 12.37         | 0.025084       |
| 11.65         | 0.025083       | 11.83         | 0.047744       | 12.02         | 0.137417         | 12.20         | 0.047741       | 12.38         | 0.025082       |
| 11.67         | 0.025082       | 11.85         | 0.047741       | 12.03         | 0.137425         | 12.22         | 0.034404       | 12.40         | 0.025085       |
| 11.68         | 0.025083       | 11.87         | 0.047741       | 12.05         | 0.137417         | 12.23         | 0.034404       | 12.42         | 0.023831       |
| 11.70         | 0.025081       | 11.88         | 0.047744       | 12.07         | 0.137425         | 12.25         | 0.034406       | 12.43         | 0.023833       |
| 11.72         | 0.034404       | 11.90         | 0.047741       | 12.08         | 0.137417         | 12.27         | 0.034403       | 12.45         | 0.023831       |
| 11.73         | 0.034405       | 11.92         | 0.082359       | 12.10         | 0.137425         | 12.28         | 0.034406       | 12.47         | 0.023831       |
| 11.75         | 0.034404       | 11.93         | 0.082356       | 12.12         | 0.047741         | 12.30         | 0.034402       | 12.48         | 0.023833       |
| 11.77         | 0.034405       | 11.95         | 0.082360       | 12.13         | 0.047744         | 12.32         | 0.025082       | 12.50         | 0.023831       |




IDF Report


10-06-2025 Hydrology Studio y 3,0,0,38

| Equation     |        | Intensity = B / (Tc + D)^E (in/hr) |        |         |         |         |         |         |  |
|--------------|--------|------------------------------------|--------|---------|---------|---------|---------|---------|--|
| Coefficients | 1-yr   | 2-yr                               | 3-yr   | 5-yr    | 10-yr   | 25-уг   | 50-yr   | 100-yr  |  |
| В            | 9.3449 | 11.1753                            | 0.0000 | 14.2321 | 16.7547 | 20.1787 | 22.8243 | 25.5746 |  |
| D            | 0.0000 | 0.0000                             | 0.0000 | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |  |
| E            | 0.5226 | 0.5225                             | 0.0000 | 0.5234  | 0.5239  | 0.5227  | 0.5240  | 0.5242  |  |
| _            | 0.0220 |                                    |        |         |         |         |         |         |  |

Minimum Tc = 5 minutes

| Тс    |      |      |      | Intensity V | alues (in/hr) |       |       |        |
|-------|------|------|------|-------------|---------------|-------|-------|--------|
| (min) | 1-yr | 2-yr | 3-yr | 5-yr        | 10-yr         | 25-уг | 50-yr | 100-yr |
| Cf    | 1.00 | 1.00 | 1.00 | 1.00        | 1.00          | 1.00  | 1.00  | 1.00   |
| 5     | 4.03 | 4.82 | 0    | 6.13        | 7.21          | 8.70  | 9.82  | 11.00  |
| 10    | 2,81 | 3.36 | 0    | 4.26        | 5.01          | 6.06  | 6.83  | 7.65   |
| 15    | 2.27 | 2.71 | 0    | 3.45        | 4.05          | 4.90  | 5.52  | 6.18   |
| 20    | 1.95 | 2.34 | 0    | 2.97        | 3.49          | 4.22  | 4.75  | 5.32   |
| 25    | 1.74 | 2.08 | 0    | 2.64        | 3.10          | 3.75  | 4.22  | 4.73   |
| 30    | 1.58 | 1.89 | 0    | 2.40        | 2.82          | 3.41  | 3.84  | 4.30   |
| 35    | 1.46 | 1.74 | 0    | 2.21        | 2.60          | 3.15  | 3.54  | 3.97   |
| 40    | 1.36 | 1.63 | 0    | 2.06        | 2.43          | 2.93  | 3.30  | 3.70   |
| 45    | 1.28 | 1.53 | 0    | 1.94        | 2.28          | 2.76  | 3.10  | 3.48   |
| 50    | 1.21 | 1.45 | 0    | 1.84        | 2.16          | 2.61  | 2.94  | 3.29   |
| 55    | 1.15 | 1.38 | 0    | 1.75        | 2.05          | 2.48  | 2.80  | 3.13   |
| 60    | 1.10 | 1.32 | 0    | 1.67        | 1.96          | 2.37  | 2.67  | 2.99   |





## **Precipitation Report**

Hydrology Studio v 3.0.0.38 (Rainfall totals in Inches)

10-06-2025

|                          | Active        | 1-yr          | 2-yr   | 3-уг | 5-yr | 10-yr | 25-yr | 50-yr       | 100      |
|--------------------------|---------------|---------------|--------|------|------|-------|-------|-------------|----------|
| Active                   |               | ~             | ~      |      | ~    | ~     | ~     | ~           | •        |
| SCS Storms               | > SCS Dime    | nsionless S   | Storms |      |      |       |       | v           |          |
| SCS 6hr                  |               | 1.97          | 2.36   | 0    | 2.99 | 3.51  | 4.24  | 4.77        | 5.       |
| Type I, 24-hr            |               | 2.87          | 3.44   | 0    | 4.38 | 5.17  | 6.24  | 7.04        | 7.       |
| Type IA, 24-hr           |               | 2.87          | 3.44   | 0    | 4.38 | 5.17  | 6.24  | 7.04        | 7.       |
| Type II, 24-hr           |               | 2.87          | 3.44   | 0    | 4.38 | 5.17  | 6.24  | 7.04        | 7.9      |
| Type II FL, 24-hr        |               | 2.87          | 3.44   | 0    | 4.38 | 5.17  | 6.24  | 7.04        | 7.9      |
| Type III, 24-hr          |               | 2.87          | 3.44   | 0    | 4.38 | 5.17  | 6.24  | 7.04        | 7.       |
| Synthetic Storms         | > IDF-Based   | Synthetic     | Storms |      | 4 4  |       |       |             | - ;      |
| 1-hr                     |               | 1.10          | 1.32   | 0    | 1.67 | 1.96  | 2.37  | 2.67        | 2.9      |
| 2-hr                     |               | 1.53          | 1.83   | 0    | 2.32 | 2.73  | 3.30  | 3.71        | 4.       |
| 3-hr                     |               | 1.86          | 2.22   | 0    | 2.82 | 3.31  | 4.01  | 4.50        | 5.0      |
| 6-hr                     |               | 2.59          | 3.10   | 0    | 3.92 | 4.60  | 5.58  | 6.27        | 7.0      |
| 12-hr                    |               | 3.60          | 4.31   | 0    | 5.46 | 6.40  | 7.77  | 8.71        | 9.7      |
| 24-hr                    |               | 5.02          | 6.00   | 0    | 7.60 | 8.90  | 10.82 | 12.12       | 13.      |
| <b>Huff Distribution</b> | > 1st Quartil | e (0 to 6 hr  | B):    |      |      |       |       | _ !         |          |
| 1-hr                     |               | 1.02          | 1.22   | 0    | 1.55 | 1.82  | 2.20  | 2.48        | 2.7      |
| 2-hr                     |               | 1.34          | 1.60   | 0    | 2.03 | 2.39  | 2.89  | 3.26        | 3.6      |
| 3-hr                     |               | 1.55          | 1.86   | 0    | 2.36 | 2.78  | 3.35  | 3.78        | 4.2      |
| 6-hr                     |               | 1.97          | 2.36   | 0    | 2.99 | 3.51  | 4.24  | 4.77        | 5.3      |
| Huff Distribution        | > 2nd Quarti  | ile (>6 to 12 | hrs)   |      |      |       |       | ,<br>.r. /3 | n 1: % - |
| 8-hr                     |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| 12-hr                    |               | 2.45          | 2.92   | 0    | 3.70 | 4.34  | 5.23  | 5.89        | 6.5      |
| Huff Distribution        | > 3rd Quartil | e (>12 to 24  | l hrs) |      |      |       |       | i ve au     | 4 .      |
| 18-hr                    |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| 24-hr                    |               | 2.87          | 3.44   | 0    | 4.38 | 5.17  | 6.24  | 7.04        | 7.9      |
| Custom Storms            | > Custom St   | orm Distrib   | utions |      |      |       |       |             | \$       |
| My Custom Storm 1        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 2        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 3        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 4        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 5        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 6        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 7        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 8        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 9        |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |
| My Custom Storm 10       |               | 0             | 0      | 0    | 0    | 0     | 0     | 0           | 0        |

## Precipitation Report Cont'd

Rainfall totals in Inches 10-06-2025

|              | Active 1-yr    | 2-yr | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-уг |
|--------------|----------------|------|------|------|-------|-------|-------|--------|
| Active       | <b>✓</b>       | ~    |      | ~    | ~     | ~     | ~     | ~      |
| Huff Indiana | > Indianapolis |      |      |      |       |       | - E   |        |
| 30-min       | 0.79           | 0.95 | 0    | 1.20 | 1.41  | 1.70  | 1.92  | 2.15   |
| 1-hr         | 1.02           | 1.22 | 0    | 1.55 | 1.82  | 2.20  | 2.48  | 2.78   |
| 2-hr         | 1.34           | 1.60 | 0    | 2.03 | 2.39  | 2.89  | 3.26  | 3.65   |
| 3-hr         | 1.55           | 1.86 | 0    | 2.36 | 2.78  | 3.35  | 3.78  | 4.23   |
| 6-hr         | 1.97           | 2.36 | 0    | 2.99 | 3.51  | 4.24  | 4.77  | 5.35   |
| 12-hr        | 2.45           | 2.92 | 0    | 3.70 | 4.34  | 5.23  | 5.89  | 6.59   |
| 24-hr        | 2.87           | 3.44 | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| Huff Indiana | > Evansville   |      |      |      |       |       |       |        |
| 30-min       | 0.79           | 0.95 | 0    | 1.20 | 1.41  | 1.70  | 1.92  | 2.15   |
| 1-hr         | 1.02           | 1.22 | 0    | 1.55 | 1.82  | 2.20  | 2.48  | 2.78   |
| 2-hr         | 1.34           | 1.60 | 0    | 2.03 | 2.39  | 2.89  | 3.26  | 3.65   |
| 3-hr         | 1.55           | 1.86 | 0    | 2.36 | 2.78  | 3.35  | 3.78  | 4.23   |
| 6-hr         | 1.97           | 2.36 | 0    | 2.99 | 3.51  | 4.24  | 4.77  | 5.35   |
| 12-hr        | 2.45           | 2.92 | 0    | 3.70 | 4.34  | 5.23  | 5.89  | 6.59   |
| 24-hr        | 2.87           | 3.44 | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| Huff Indiana | > Fort Wayne   |      |      |      |       |       |       |        |
| 30-min       | 0.79           | 0.95 | 0    | 1.20 | 1.41  | 1.70  | 1.92  | 2.15   |
| 1-hr         | 1.02           | 1.22 | 0    | 1.55 | 1.82  | 2.20  | 2.48  | 2.78   |
| 2-hr         | 1.34           | 1.60 | 0    | 2.03 | 2.39  | 2.89  | 3.26  | 3.65   |
| 3-hr         | 1.55           | 1.86 | 0    | 2.36 | 2.78  | 3.35  | 3.78  | 4.23   |
| 6-hr         | 1.97           | 2.36 | 0    | 2.99 | 3.51  | 4.24  | 4.77  | 5.35   |
| 12-hr        | 2.45           | 2.92 | 0    | 3.70 | 4.34  | 5.23  | 5.89  | 6.59   |
| 24-hr        | 2.87           | 3.44 | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| Huff Indiana | > South Bend   |      |      |      |       |       |       |        |
| 30-min       | 0.79           | 0.95 | 0    | 1.20 | 1.41  | 1.70  | 1.92  | 2.15   |
| 1-hr         | 1.02           | 1.22 | 0    | 1.55 | 1.82  | 2.20  | 2.48  | 2.78   |
| 2-hr         | 1.34           | 1.60 | 0    | 2.03 | 2.39  | 2.89  | 3.26  | 3.65   |
| 3-hr         | 1.55           | 1.86 | 0    | 2.36 | 2.78  | 3.35  | 3.78  | 4.23   |
| 6-hr         | 1.97           | 2.36 | 0    | 2.99 | 3.51  | 4.24  | 4.77  | 5.35   |
| 12-hr        | 2.45           | 2.92 | 0    | 3.70 | 4.34  | 5.23  | 5.89  | 6.59   |
| 24-hr        | 2.87           | 3.44 | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
|              |                |      |      |      |       |       |       |        |
|              |                |      |      |      |       |       |       |        |

## Precipitation Report Cont'd

Rainfall totals in Inches 10-06-2025

|                     | Active      | 1-yr       | 2-yr      | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yı |
|---------------------|-------------|------------|-----------|------|------|-------|-------|-------|--------|
| Activ               | е           | ~          | ~         |      | ~    | ~     | ~     | ~     | ~      |
| NRCS Storm          | s > NRCS D  | imensionle | ss Storms |      |      |       |       |       | 11     |
| NRCS MSE1, 24-I     | ır          | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCS MSE2, 24-I     | ır          | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCS MSE3, 24-      | or .        | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCS MSE4, 24-h     | ir ·        | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCS MSE5, 24-h     | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCS MSE6, 24-h     | r.          | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NOAA-A, 24-h        | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NOAA-B, 24-h        | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NOAA-C, 24-h        | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NOAA-D, 24-h        | r 🗸 :       | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCC-A, 24-h        | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCC-B, 24-h        | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCC-C, 24-h        | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| NRCC-D, 24-h        | F           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| CA-1, 24-h          | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| CA-2, 24-h          | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| CA-3, 24-h          | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| CA-4, 24-h          | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| CA-5, 24-h          | r ,         | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| CA-6, 24-h          | r ·         | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| FDOT Storm          | > Florida É | OT Storms  | 19 (      |      |      |       |       |       |        |
| FDOT, 1-h           | r ·         | 1.02       | 1.22      | 0    | 1.55 | 1.82  | 2.20  | 2.48  | 2.78   |
| FDOT, 2-h           | r           | 1.34       | 1.60      | 0    | 2.03 | 2.39  | 2.89  | 3.26  | 3.65   |
| FDOT, 4-h           | г           | 0          | 0         | 0    | 0    | 0     | 0     | 0     | 0      |
| FDOT, 8-h           | r:          | 0          | , 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| FDOT, 24-h          | r           | 2.87       | 3.44      | 0    | 4.38 | 5.17  | 6.24  | 7.04  | 7.90   |
| FDOT, 72-h          | r           | 0          | 0         | 0    | 0    | 0     | 0     | 0     | 0      |
| SFWMD, 72-h         | ra          | 0          | . 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| Austin Storm        | > Austin Fi | requency S | torms     |      |      |       |       |       |        |
| Austin Zone 1, 24-h | r :         | 0          | , 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| Austin Zone 2, 24-h | r           | 0          | . 0       | 0    | 0    | 0     | 0     | 0     | 0      |
|                     |             |            |           |      |      |       |       |       |        |
|                     |             |            |           |      |      |       |       |       |        |

## STORMWATER TREATMENT CALCULATIONS [PR-01SW]

## Compute Water Quality Volume

WQV = Water Quality Volume (acre-feet)

P = 1.3" (90th percentile rainfall event)

R = Volumetric Runoff Coefficient, 0.050 + 0.009(I)

I = Percent Impervious Cover, Impervious Area / Total Area DA =5.852 DCIA = 2.095 acres

DA = Drainage Area (Acres)

DCIA = Directly Connected Impervious Area (Acres)

Determine Percent Impervious Cover (I)

Calculate Volumetric Runoff Coefficient (R)

|       | C     | alculate W | QV        |            | Calculate Sediment Forebay Volume |         |           |            |  |
|-------|-------|------------|-----------|------------|-----------------------------------|---------|-----------|------------|--|
|       | ac-ft |            | V(req) cf | V(prop) cf | Required                          | Percent | V(reg) cf | V(prop) cf |  |
| WQV = | 0.236 | =          | 10278     | 14750      | Yes                               | 25%     | 2570      | 2580       |  |

## Compute Runoff Depth

Q = Runoff Depth (in watershed inches) WQV = Water Quality Volume (acre-feet)

DA = Drainage Area (acres)

0.48 watershed inches  $Q_{(in)} =$ 

## Determine NCRS Curve Number (CN)

0.48  $Q_{(in)} =$ 

watershed inches

1.3

## TR-55 Figure 2-1

CN =

## Determine Initial Abstraction (Ia)

## TR-55 Table 4-1

 $I_a =$ 0.247 inches

## Determine Unit Peak Discharge (qu)

Time of Concentration (T<sub>c</sub>), referenced from Pipe Flow Calculation Worksheet

 $T_c =$ 0.58 hours

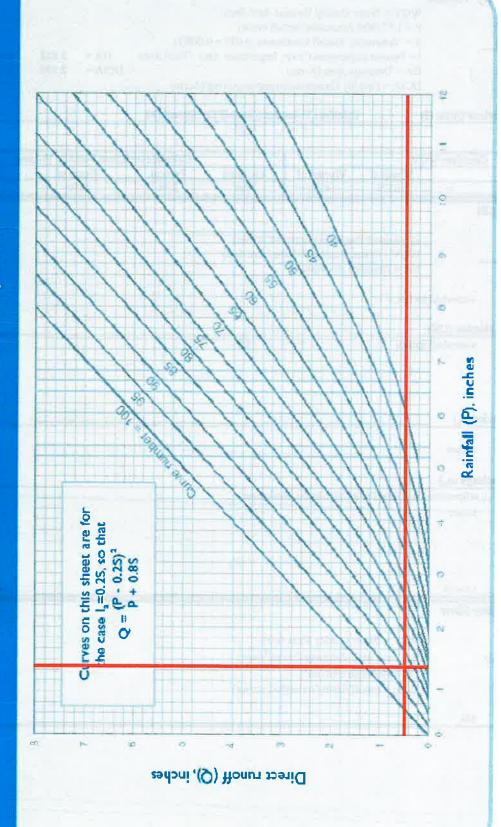
 $I_a/P =$ 0.19

## TR-55 Exhibit 4-III

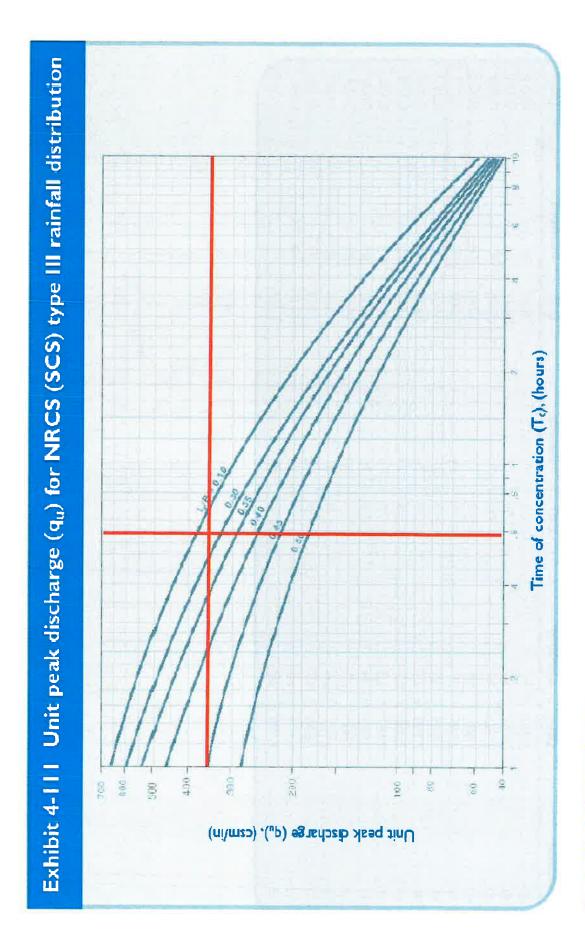
 $q_u =$ 350 csm/in

## Compute Water Quality Flow

WQF = Water Quality Flow (cfs)


WQF = (qu)(DA)(Q)

qu = unit peak discharge (cfs/mi<sup>2</sup>/inch)


DA = drainage area (mi<sup>2</sup>)

Q(in) = runoff depth (watershed inches)

WQF = 1.548 cfs



| 20                                     | Curve I <sub>a</sub> number (in) | 85                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-1 la values for runoff curve numbers | Curve la number (in)             | 70       0.857         71       0.817         72       0.740         73       0.740         74       0.667         76       0.632         77       0.597         78       0.564         79       0.532         80       0.500         81       0.439         83       0.410         84       0.381 |
| Table 4-1 la values for                | urve<br>mber                     | 55. 1.636<br>56. 1.571<br>57. 1.509<br>58. 1.448<br>59. 1.390<br>60. 1.333<br>61. 1.279<br>63. 1.175<br>64. 1.175<br>65. 1.030<br>67. 0.985<br>68. 0.941                                                                                                                                           |
| F                                      | Curve la number (in)             | 40 3.000<br>41 2.878<br>42 2.762<br>43 2.651<br>44 2.545<br>46 2.444<br>47 2.255<br>48 2.167<br>49 2.000<br>51 1.922<br>52 1.846<br>53 1.774<br>54 1.704                                                                                                                                           |



Return to Outlet Treatment Summary

## STORMWATER TREATMENT CALCULATIONS [PR-03S]

## Compute Water Quality Volume

WQV = Water Quality Volume (acre-feet)

P = 1.3" (90th percentile rainfall event)

R = Volumetric Runoff Coefficient, 0.050 + 0.009(I)

I = Percent Impervious Cover, Impervious Area / Total Area DA =0.504 acres

DA = Drainage Area (Acres)

DCIA =

0.120 acres

Determine Percent Impervious Cover (I)

Calculate Volumetric Runoff Coefficient (R)

I =

R =

DCIA = Directly Connected Impervious Area (Acres)

| -     | C     | Calculate W | QV        |            | Calculate Sediment Forebay Volume |         |           |            |  |
|-------|-------|-------------|-----------|------------|-----------------------------------|---------|-----------|------------|--|
|       | ac-ft |             | V(req) cf | V(prop) cf | Required                          | Percent | V(req) cf | V(prop) cf |  |
| WQV = | 0.014 | =           | 629       | 0          | No                                | 0%      | 0         | 0          |  |

## Compute Runoff Depth

Q = Runoff Depth (in watershed inches)

WQV = Water Quality Volume (acre-feet)

DA = Drainage Area (acres)

 $Q_{(in)} =$ 

watershed inches

## Determine NCRS Curve Number (CN)

0.34

 $Q_{(in)} =$ 

0.34 watershed inches

in

## TR-55 Figure 2-1

CN =

## Determine Initial Abstraction (Ia)

## TR-55 Table 4-1

0.381 inches  $I_a =$ 

### Determine Unit Peak Discharge (q.)

Time of Concentration (Tc), referenced from Pipe Flow Calculation Worksheet

 $T_c =$ 0.44

 $I_a/P =$ 0.29

## TR-55 Exhibit 4-III

360

csm/in

hours

## Compute Water Quality Flow

WQF = Water Quality Flow (cfs)


qu = unit peak discharge (cfs/mi<sup>2</sup>/inch) WQF = (qu)(DA)(Q)

DA = drainage area (mi<sup>2</sup>)

Q(in) = runoff depth (watershed inches)

WQF = 0.097 cfs

|                                          | Curve I <sub>a</sub><br>number (in) | 0.0000000000000000000000000000000000000 |          |          | THE PROPERTY OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | C1 4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 ( |                                | THE REPORT OF THE PROPERTY OF THE PARTY OF T |                                  | 2 2 2 4 2 4 2 4 2 4 5 4 5 4 5 4 5 4 5 4 |        |                     |              |                                  |
|------------------------------------------|-------------------------------------|-----------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|--------|---------------------|--------------|----------------------------------|
| numbers                                  | l <sub>a</sub><br>(in)              | 0.857 85                                | +        | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                  | -                                          | ÷                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                | -                                       | _      | -                   | -            | 186.0                            |
| runoff curve                             | Curve                               | 70                                      | 72       | 73       | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                                 | 76                                         | 77                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                               | 80                                      | 81     | 82                  | 83           | 84                               |
| e 4-1 la values for runoff curve numbers | (in)                                | 1636                                    | 1509     | 1.448    | 0.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.333                              | 1.279                                      | 1.226                          | 1.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.125                            | 1.077                                   | 1.030  | 586.0               | 0.941        | 6680                             |
| Table 4-1                                | Curve                               | 55                                      | 57       | 58       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | · · · · · · · · · · · · · · · · · · ·      | 62                             | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                               | 65                                      | 99     | 67                  |              | 69                               |
|                                          | Curve la<br>number (in)             | 40 3,000                                | 42 2.762 | 43 2.651 | Contract the Contract of the C | A THE COLUMN TWO IS NOT THE OWNER. | CHARLEST VALLET AND THE SAME               | CHARLES AND RIVER BOARD STREET |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE PARTY SHEET AND A SECTION OF | CONTRACTOR CONTRACTOR                   | 511922 | ******************* | ************ | STATE OF STATE OF STATE OF STATE |



Return to Outlet Treatment Summary



## **APPENDIX C**

NRCS SOIL DATA NOAA RAINFALL DATA

|  |  | ā |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  | 2 |  |
|  |  |   |  |



Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for State of Connecticut, Eastern Part

**PARKERS PLACE** 



## **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States
Department of Agriculture and other Federal agencies, State agencies including the
Agricultural Experiment Stations, and local agencies. The Natural Resources
Conservation Service (NRCS) has leadership for the Federal part of the National
Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

|                                                                                                                                                 | 2  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Preface                                                                                                                                         | -5 |
| PrefaceHow Soil Surveys Are Made                                                                                                                | 8  |
|                                                                                                                                                 |    |
|                                                                                                                                                 |    |
|                                                                                                                                                 |    |
| 1/BADIZEDE DUM EL                                                                                                                               |    |
| - / DADICEDS ULALE)                                                                                                                             |    |
|                                                                                                                                                 |    |
|                                                                                                                                                 |    |
| and 3 to 15 percent slopes                                                                                                                      | 14 |
| - I OL - ILA MAG CONDU INSTITUTE OF LO DOTO OTRA PROPERTIES                                                                                     |    |
|                                                                                                                                                 | 16 |
| extremely stony                                                                                                                                 | 19 |
| 73C—Charlton-Chatfield complex, U to 15 percent slopes, very rocky.                                                                             | 21 |
| 73C—Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky                                                                             | 24 |
|                                                                                                                                                 |    |
| Soil Information for All Uses.  Soil Properties and Qualities.  Soil Physical Properties.  Soil Physical Properties.  Soil Physical Properties. | 24 |
| Soil Physical Properties                                                                                                                        |    |
| Soil Physical Properties                                                                                                                        | 2/ |
|                                                                                                                                                 | 24 |
| (PARKERS PLACE)                                                                                                                                 | 20 |
| Soil Qualities and Features  Hydrologic Soil Group (PARKERS PLACE)                                                                              | 25 |
| Hydrologic Soil Group (PARKERS PLACE)                                                                                                           | 3  |
| Keterences                                                                                                                                      |    |

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

## Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

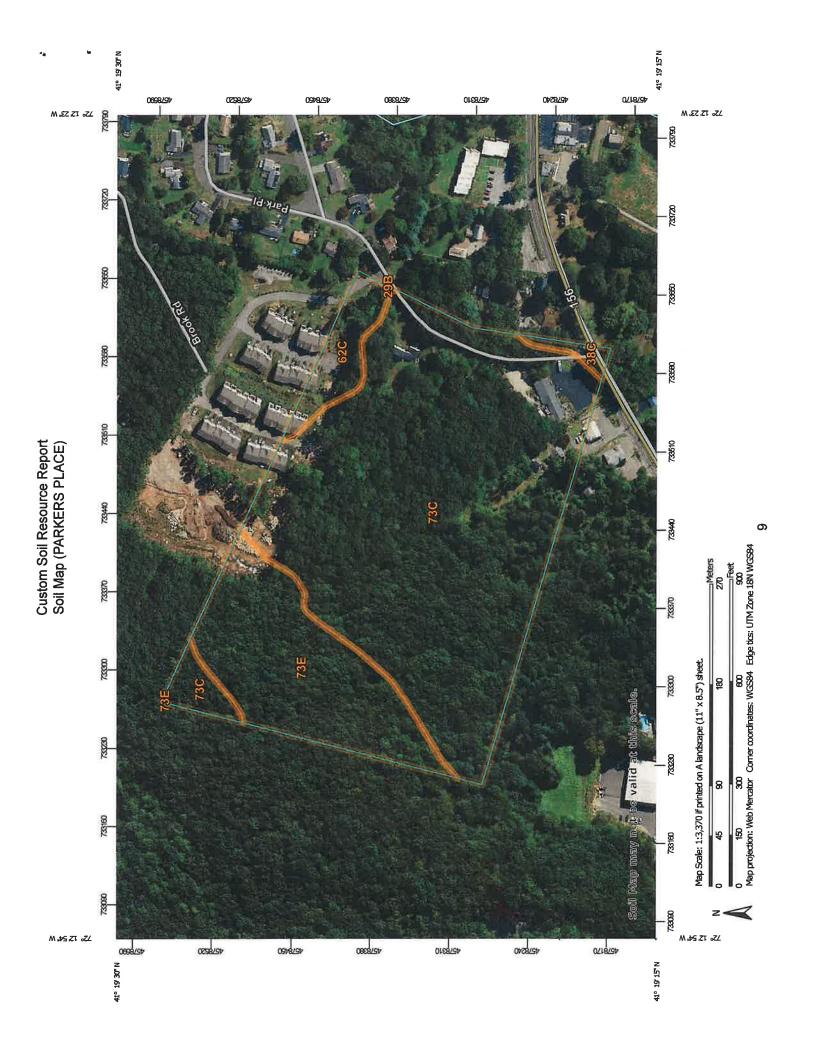
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

## Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



## MAP LEGEND

### Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Water Features **Fransportation** Background ◁ ŧ Soil Map Unit Polygons Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Rock Outcrop Special Point Features Gravelly Spot **Borrow Pit Gravel Pit** Lava Flow Clay Spot Area of Interest (AOI) Blowout Landfill

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the

Albers equal-area conic projection, should be used if more

accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut, Eastern Part Survey Area Data: Version 2, Aug 30, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Severely Eroded Spot

Slide or Slip Sodic Spot

Sinkhole

Saline Spot Sandy Spot Date(s) aerial images were photographed: Jun 14, 2022—Oct 6, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Map Unit Legend (PARKERS PLACE)

| Map Unit Symbol             | Map Unit Name                                                                 | Acres in AOI | Percent of AOI |
|-----------------------------|-------------------------------------------------------------------------------|--------------|----------------|
| 29B                         | Agawam fine sandy loam, 3 to 8 percent slopes                                 | 0.0          | 0.0%           |
| 38C                         | Hinckley loamy sand, 3 to 15 percent slopes                                   | 0.2          | 0.9%           |
| 62C                         | Canton and Charlton fine sandy loams, 3 to 15 percent slopes, extremely stony | 1.2          | 4.6%           |
| 73C                         | Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky                | 19.6         | 74.1%          |
| 73E                         | Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky               | 5.4          | 20.3%          |
| Totals for Area of Interest |                                                                               | 26.4         | 100.0%         |

## Map Unit Descriptions (PARKERS PLACE)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not

## **Custom Soil Resource Report**

mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## State of Connecticut, Eastern Part

## 29B—Agawam fine sandy loam, 3 to 8 percent slopes

## **Map Unit Setting**

National map unit symbol: 2tyqx

Elevation: 0 to 820 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 250 days

Farmland classification: All areas are prime farmland

## **Map Unit Composition**

Agawam and similar soils: 85 percent *Minor components*: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Agawam**

## **Setting**

Landform: Outwash terraces

Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist and/or phyllite

## Typical profile

Ap - 0 to 11 inches: fine sandy loam Bw1 - 11 to 16 inches: fine sandy loam Bw2 - 16 to 26 inches: fine sandy loam 2C1 - 26 to 45 inches: loamy fine sand 2C2 - 45 to 55 inches: loamy fine sand 2C3 - 55 to 65 inches: loamy sand

## Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 15 to 35 inches to strongly contrasting textural

stratification

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: B

Ecological site: F145XY008MA - Dry Outwash

## Custom Soil Resource Report

Hydric soil rating: No

## **Minor Components**

## **Merrimac**

Percent of map unit: 5 percent Landform: Outwash terraces

Landform position (three-dimensional): Riser, tread

Down-slope shape: Convex Across-slope shape: Convex

Ecological site: F145XY008MA - Dry Outwash

Hydric soil rating: No

## **Ninigret**

Percent of map unit: 4 percent

Landform: Terraces
Down-slope shape: Linear
Across-slope shape: Concave
Hydric soil rating: No

## Hinckley

Percent of map unit: 3 percent

Landform: Eskers

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Ecological site: F145XY008MA - Dry Outwash

Hydric soil rating: No

## **Walpole**

Percent of map unit: 3 percent

Landform: Deltas, depressions, outwash terraces, depressions, outwash plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, talf, dip

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

## 38C—Hinckley loamy sand, 3 to 15 percent slopes

## **Map Unit Setting**

National map unit symbol: 2svmb

Elevation: 0 to 1,290 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Farmland of statewide importance

## **Map Unit Composition**

Hinckley and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Hinckley**

#### Setting

Landform: Outwash deltas, outwash terraces, moraines, eskers, kames, outwash plains, kame terraces

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope,

Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser, tread

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

#### Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand Bw2 - 11 to 16 inches: gravelly loamy sand BC - 16 to 19 inches: very gravelly loamy sand C - 19 to 65 inches: very gravelly sand

#### Properties and qualities

Slope: 3 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very

high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: F144AY022MA - Dry Outwash

Hydric soil rating: No

#### **Minor Components**

#### Merrimac

Percent of map unit: 5 percent

Landform: Kames, outwash plains, outwash terraces, moraines, eskers

Landform position (two-dimensional): Backslope, footslope, shoulder, toeslope,

summit

Landform position (three-dimensional): Side slope, crest, head slope, nose slope,

riser, tread

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

#### Windsor

Percent of map unit: 5 percent

Landform: Moraines, eskers, kames, outwash deltas, outwash terraces, outwash

plains, kame terraces

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope,

summit

Landform position (three-dimensional): Nose slope, side slope, crest, head slope,

riser, tread

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### **Agawam**

Percent of map unit: 3 percent

Landform: Outwash deltas, outwash terraces, moraines, eskers, kames, outwash

plains, kame terraces

Landform position (two-dimensional): Shoulder, backslope, toeslope, summit,

footslope

Landform position (three-dimensional): Nose slope, side slope, crest, head slope,

riser, tread

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### Sudbury

Percent of map unit: 2 percent

Landform: Outwash deltas, moraines, outwash plains, kame terraces, outwash

terraces

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: No

## 62C—Canton and Charlton fine sandy loams, 3 to 15 percent slopes, extremely stony

#### **Map Unit Setting**

National map unit symbol: 2wks7

Elevation: 0 to 1,310 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Canton, extremely stony, and similar soils: 50 percent Charlton, extremely stony, and similar soils: 35 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Canton, Extremely Stony**

#### Setting

Landform: Moraines, hills, ridges

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest, nose slope

Down-slope shape: Convex, linear Across-slope shape: Convex

Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

#### Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 5 inches: fine sandy loam Bw1 - 5 to 16 inches: fine sandy loam

Bw2 - 16 to 22 inches: gravelly fine sandy loam 2C - 22 to 67 inches: gravelly loamy sand

#### Properties and qualities

Slope: 3 to 15 percent

Surface area covered with cobbles, stones or boulders: 9.0 percent Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural

stratification

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

#### **Description of Charlton, Extremely Stony**

#### Setting

Landform: Ridges, ground moraines, hills

Landform position (two-dimensional): Backslope, shoulder, summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex, linear Across-slope shape: Convex

Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

#### **Typical profile**

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 4 inches: fine sandy loam

Bw - 4 to 27 inches: gravelly fine sandy loam

C - 27 to 65 inches: gravelly fine sandy loam

#### Properties and qualities

Slope: 3 to 15 percent

Surface area covered with cobbles, stones or boulders: 9.0 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

#### **Minor Components**

#### Chatfield, extremely stony

Percent of map unit: 5 percent

Landform: Ridges, hills

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Nose slope, side slope, crest

Down-slope shape: Convex

Across-slope shape: Linear, convex

Hydric soil rating: No

#### Leicester, extremely stony

Percent of map unit: 5 percent

Landform: Hills, drainageways, depressions, ground moraines Landform position (two-dimensional): Toeslope, footslope

Landform position (three-dimensional): Base slope

Down-slope shape: Concave, linear Across-slope shape: Concave

Hydric soil rating: Yes

#### Sutton, extremely stony

Percent of map unit: 5 percent Landform: Ground moraines, hills

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

## 73C—Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky

#### Map Unit Setting

National map unit symbol: 2w698

Elevation: 0 to 1,550 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Charlton, very stony, and similar soils: 50 percent Chatfield, very stony, and similar soils: 30 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Charlton, Very Stony**

#### Setting

Landform: Ridges, hills

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest, nose slope

Down-slope shape: Convex, linear Across-slope shape: Convex

Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or

#### Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 4 inches: fine sandy loam

Bw - 4 to 27 inches: gravelly fine sandy loam C - 27 to 65 inches: gravelly fine sandy loam

#### **Properties and qualities**

Slope: 3 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

#### Description of Chatfield, Very Stony

#### Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Nose slope, side slope, crest

Down-slope shape: Convex

Across-slope shape: Linear, convex

Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or

#### Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 2 inches: fine sandy loam

Bw - 2 to 30 inches: gravelly fine sandy loam

2R - 30 to 40 inches: bedrock

#### Properties and qualities

Slope: 3 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 41 inches to lithic bedrock

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 4.3 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

#### **Minor Components**

#### **Rock outcrop**

Percent of map unit: 5 percent

Hydric soil rating: No

Hollis, very stony

Percent of map unit: 5 percent

Landform: Hills, ridges

Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope, nose slope

Down-slope shape: Convex

Across-slope shape: Linear, convex

Hydric soil rating: No

#### Leicester, very stony

Percent of map unit: 5 percent

Landform: Drainageways, depressions

Down-slope shape: Linear Across-slope shape: Concave

Hydric soil rating: Yes

#### Sutton, very stony

Percent of map unit: 5 percent Landform: Ground moraines, hills

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

#### 73E—Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky

#### **Map Unit Setting**

National map unit symbol: 9|q| Elevation: 0 to 1,200 feet

Mean annual precipitation: 43 to 56 inches Mean annual air temperature: 45 to 55 degrees F

Frost-free period: 140 to 185 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Charlton and similar soils: 45 percent Chatfield and similar soils: 30 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Charlton**

#### Setting

Landform: Hills

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Coarse-loamy melt-out till derived from granite and/or schist

and/or gneiss

#### **Typical profile**

Ap - 0 to 4 inches: fine sandy loam Bw1 - 4 to 7 inches: fine sandy loam Bw2 - 7 to 19 inches: fine sandy loam

Bw3 - 19 to 27 inches: gravelly fine sandy loam C - 27 to 65 inches: gravelly fine sandy loam

#### Properties and qualities

Slope: 15 to 45 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

#### **Description of Chatfield**

#### **Settina**

Landform: Ridges, hills Down-slope shape: Convex Across-slope shape: Linear

Parent material: Coarse-loamy melt-out till derived from granite and/or schist

and/or gneiss

#### Typical profile

Oa - 0 to 1 inches: highly decomposed plant material

A - 1 to 6 inches: gravelly fine sandy loam
Bw1 - 6 to 15 inches: gravelly fine sandy loam
Bw2 - 15 to 29 inches: gravelly fine sandy loam
2R - 29 to 80 inches: unweathered bedrock

#### **Properties and qualities**

Slope: 15 to 45 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.3 inches)

#### **Interpretive groups**

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

#### **Minor Components**

#### Rock outcrop

Percent of map unit: 10 percent Hydric soil rating: No

#### Leicester

Percent of map unit: 5 percent Landform: Drainageways, depressions Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: Yes

#### Sutton, very stony

Percent of map unit: 5 percent Landform: Drainageways, depressions Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

#### **Hollis**

Percent of map unit: 3 percent Landform: Ridges, hills Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

#### Unnamed, sandy subsoil

Percent of map unit: 1 percent Hydric soil rating: No

#### Unnamed, red parent material

Percent of map unit: 1 percent Hydric soil rating: No

### Soil Information for All Uses

#### **Soil Properties and Qualities**

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

#### **Soil Physical Properties**

Soil Physical Properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

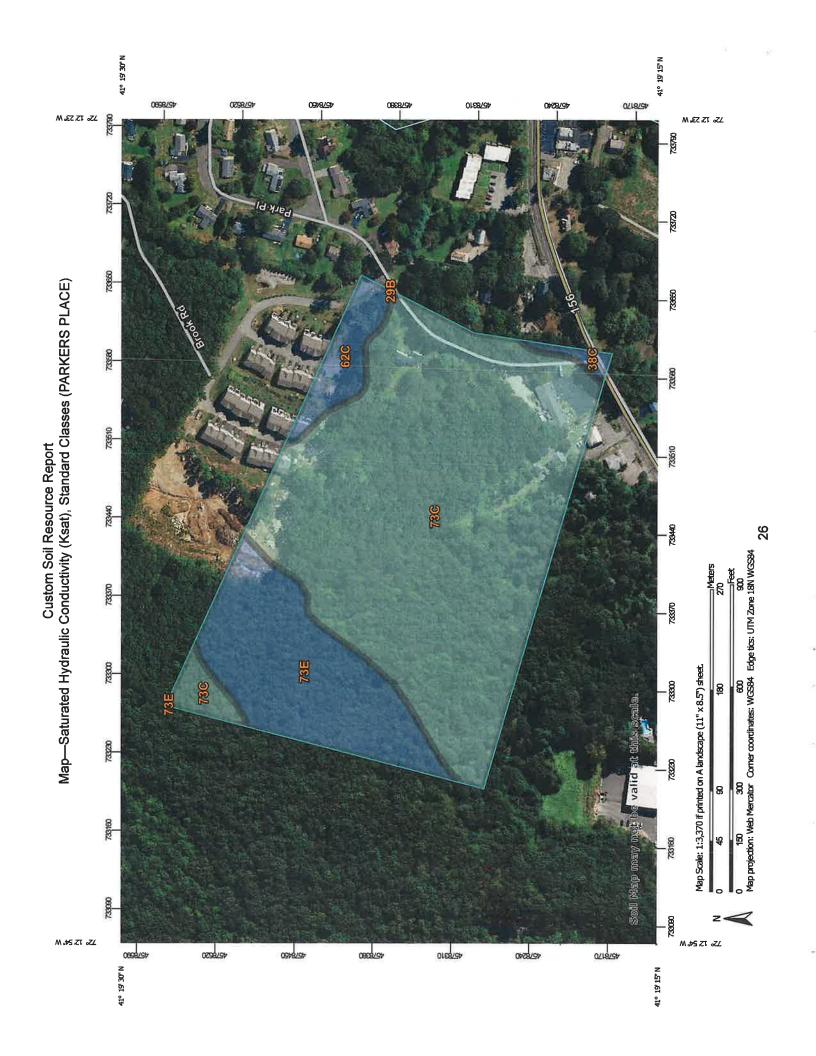
## Saturated Hydraulic Conductivity (Ksat), Standard Classes (PARKERS PLACE)

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits. The classes are:

Very low: 0.00 to 0.01


Low: 0.01 to 0.1

Moderately low: 0.1 to 1.0

Moderately high: 1 to 10

High: 10 to 100

Very high: 100 to 705



## MAP LEGEND

#### Not rated or not available Streams and Canals Interstate Highways Aerial Photography Major Roads Local Roads US Routes Rails Water Features Transportation Background ŧ Moderately High (1 - 10) Not rated or not available Moderately Low (0.1 - 1) Moderately Low (0.1 - 1) Not rated or not available Moderately High (1 - 10) Area of Interest (AOI) Moderately Low (0.1 - 1) Moderately High (1 - 10) Very Low (0.0 - 0.01) Very High (100 - 705) Very Low (0.0 - 0.01) Very High (100 - 705) Very Low (0.0 - 0.01) Low (0.01 - 0.1) High (10 - 100) Low (0.01 - 0.1) High (10 - 100) Low (0.01 - 0.1) Soil Rating Polygons Area of Interest (AOI) Soil Rating Lines Soil Rating Points } • B

# MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut, Eastern Part Survey Area Data: Version 2, Aug 30, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 14, 2022—Oct 6, 2022

Very High (100 - 705)

High (10 - 100)

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Table—Saturated Hydraulic Conductivity (Ksat), Standard Classes (PARKERS PLACE)

| Map unit symbol         | Map unit name                                                                          | Rating (micrometers per second) | Acres in AOI | Percent of AOI |
|-------------------------|----------------------------------------------------------------------------------------|---------------------------------|--------------|----------------|
| 29B                     | Agawam fine sandy<br>loam, 3 to 8 percent<br>slopes                                    | 73.4426                         | 0.0          | 0.0%           |
| 38C                     | Hinckley loamy sand, 3<br>to 15 percent slopes                                         | 100.0000                        | 0.0000 0.2   |                |
| 62C                     | Canton and Charlton fine<br>sandy loams, 3 to 15<br>percent slopes,<br>extremely stony | 57.2131                         | 1.2          | 4.6%           |
| 73C                     | Charlton-Chatfield<br>complex, 0 to 15<br>percent slopes, very<br>rocky                | 10.0000                         | 19.6         | 74.1%          |
| 73E                     | Charlton-Chatfield<br>complex, 15 to 45<br>percent slopes, very<br>rocky               | 23.0000 5.4                     |              | 20.3%          |
| Totals for Area of Inte |                                                                                        | 1,                              | 26.4         | 100.0%         |

## Rating Options—Saturated Hydraulic Conductivity (Ksat), Standard Classes (PARKERS PLACE)

Units of Measure: micrometers per second
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified

Tie-break Rule: Fastest Interpret Nulls as Zero: No

Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average)

Top Depth: 12 Bottom Depth: 60

Units of Measure: Inches

### Soil Qualities and Features

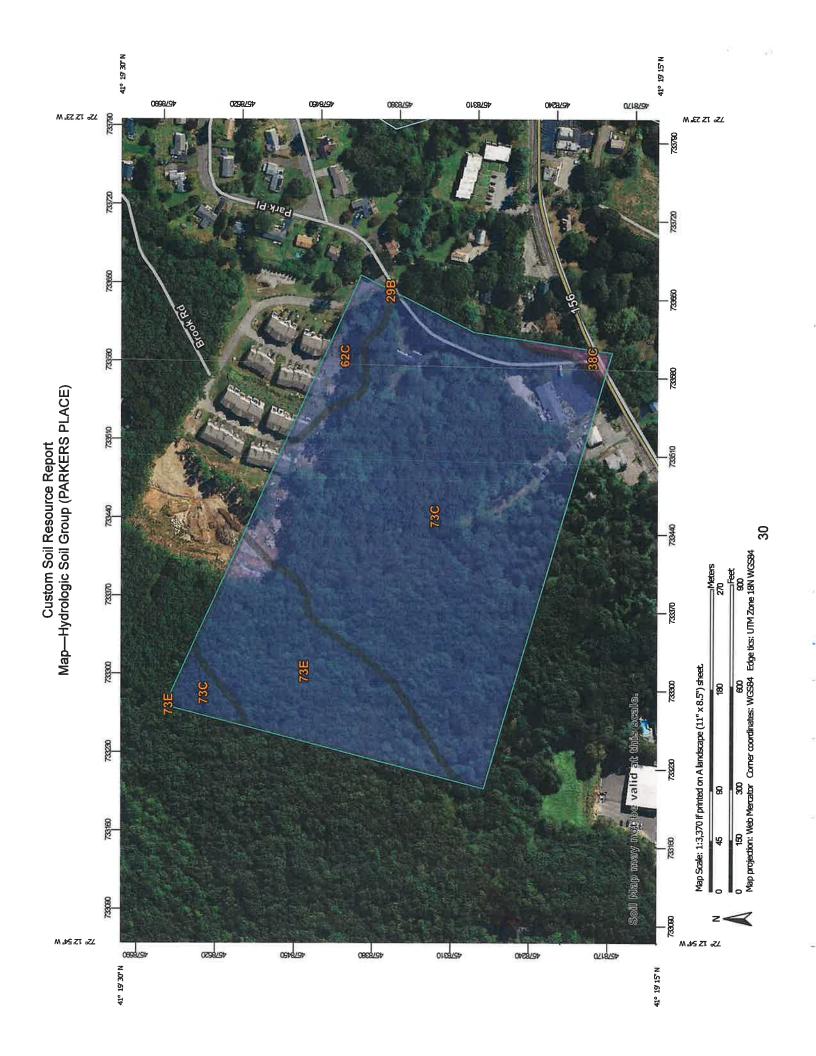
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features

include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

#### **Hydrologic Soil Group (PARKERS PLACE)**

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

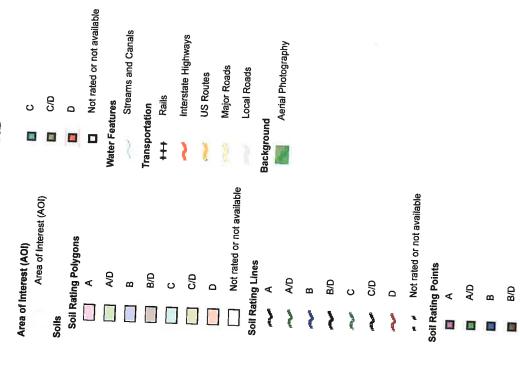
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.



4

ķ

## **MAP LEGEND**



# MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut, Eastern Part Survey Area Data: Version 2, Aug 30, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 14, 2022—Oct 6, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Table—Hydrologic Soil Group (PARKERS PLACE)

|                 | Map unit name                                                                          | Rating | Acres in AOI | Percent of AOI |
|-----------------|----------------------------------------------------------------------------------------|--------|--------------|----------------|
| Map unit symbol | triap anno mana                                                                        |        | 0.0          | 0.0%           |
| 29B             | Agawam fine sandy<br>loam, 3 to 8 percent<br>slopes                                    | В      |              | 0.9%           |
| 38C             | Hinckley loamy sand, 3 to 15 percent slopes                                            | A      | 0.2          |                |
| 62C             | Canton and Chariton fine<br>sandy loams, 3 to 15<br>percent slopes,<br>extremely stony | В      | 1.2          | 74.1%          |
| 73C             | Charlton-Chatfield<br>complex, 0 to 15<br>percent slopes, very<br>rocky                | В      | 19.6         |                |
| 73E             | Charlton-Chatfield<br>complex, 15 to 45<br>percent slopes, very                        | В      | 5.4          | 20.3%          |
|                 | rocky                                                                                  |        | 26.4         | 100.0          |

## Rating Options—Hydrologic Soil Group (PARKERS PLACE)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

#### References

I

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council, 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2\_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

1



NOAA Atlas 14, Volume 10, Version 3 Location name: Niantic, Connecticut, USA\* Latitude: 41.3226°, Longitude: -72.2093° Elevation: 32 ft\*\* source: ESRI Maps
\*\* source: USGS



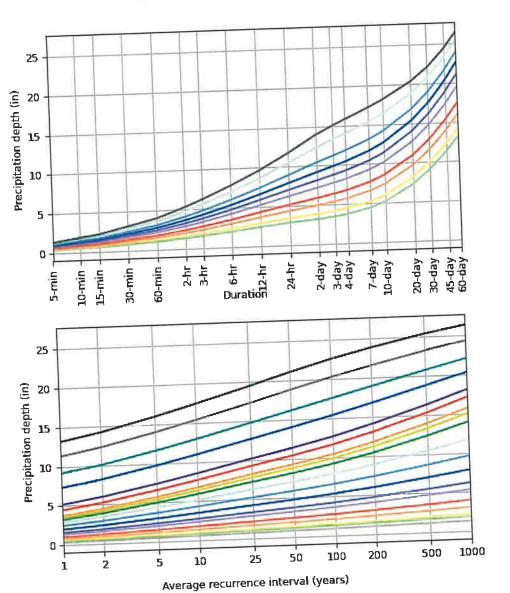
## POINT PRECIPITATION FREQUENCY ESTIMATES

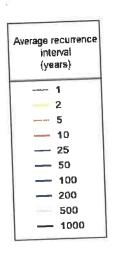
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite NOAA, National Weather Service, Silver Spring, Maryland

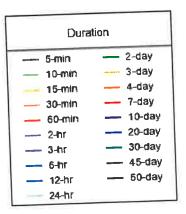
PF tabular | PF graphical | Maps & aerials

#### PF tabular

| Duratio | S-based point precipitation frequency estimates with 90% confidence intervals (in inc |                                                |                             |                            |                             |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | nches)1                        |
|---------|---------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|
|         | 1                                                                                     | 2                                              | 5                           | 10                         | 25                          | 50                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                |
| 5-min   | 0.336<br>(0.259-0.427                                                                 | <b>0.402</b><br>(0.310-0.512)                  | 0.511<br>(0.393-0.651       |                            |                             |                            | 0.916                      | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500                      | 1000                           |
| 10-min  | <b>0.476</b><br>(0.367-0.605                                                          | (0.310-0.512)<br><b>0.570</b><br>(0.439-0.725) | 0.724                       |                            | 1.00                        | 1.16                       | 1 20                       | 4 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | -                              |
| 15-min  | 0.560                                                                                 | 0.671<br>(0.517-0.853)                         | 0.852                       | 1.00                       | 1.21                        | 1.36                       | 1.53                       | 1.46<br>1) (0.979-2,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.09-2.44)              | and described the state of the |
| 30-min  | <b>0.790</b> (0.609-1.00)                                                             | 0.946                                          | 1.20                        | 1.41                       | (0.897-1.60)<br><b>1.70</b> | (0.993-1.84<br>1.92        | (1.08-2.12<br><b>2.15</b>  | ) (1.15-2.41)<br><b>2.41</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                        | - Independent account          |
| 60-min  | 1.02<br>(0.787-1.30)                                                                  | <b>1.22</b> (0.941-1.55)                       | 1.55                        | (1.08-1.81)<br>1.82        | (1.26-2.26)<br><b>2.20</b>  | (1.40-2.59)<br><b>2.48</b> |                            | (1.62-3.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                        |                                |
| 2-hr    | 1.34<br>(1.04-1.68)                                                                   | 1.60                                           | (1.19-1.98)                 | (1.39-2.33)<br><b>2.39</b> | (1.63-2.91)<br><b>2.89</b>  | (1.80-3.34)<br><b>3.26</b> | (1.97-3.86)<br><b>3.65</b> | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and Barakan and a second | 4.01<br>(2.54-5.8              |
| 3-hr    | 1.55<br>(1.21-1.94)                                                                   | 1.86                                           | _(1.58-2.57)<br><b>2.36</b> | (1.84-3.04)<br><b>2.78</b> | (2.16-3.80)<br><b>3.35</b>  | (2.39-4.36)                | (2.61-5.04)                | and the Assessment of the Contract of the Cont | <b>4.78</b> (3.10-6.84)  | 5.34<br>(3.39-7.76             |
| 6-hr    | 1.97                                                                                  | 2.36                                           | (1.84-2.97)<br><b>2.99</b>  | (2.15-3.51)<br><b>3.51</b> | (2.52-4.39)<br><b>4.24</b>  | (2.78-5.03)<br><b>4.77</b> | 4.23<br>(3.04-5.82)        | <b>4.76</b> (3.22-6.61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.55<br>(3.62-7.91)      | 6.21<br>(3.96-8.99             |
| 12-hr   | (1.56-2.45)<br><b>2.45</b>                                                            | 2.92                                           | (2.35-3.73)<br><b>3.70</b>  | (2.74-4.40)                | (3.21-5.50)                 | (3.55-6.31)                | 5.35<br>(3.86-7.29)        | 6.02<br>(4.10-8.28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>7.01</b> (4.59-9.90)  | 7.85<br>(5.02-11.2             |
| 24-hr   | (1.95-3.02)<br><b>2.87</b>                                                            | 3.44                                           | (2.93-4.58)<br>4.38         | (3.42-5.39)                | (3.99-6.73)<br><b>6.24</b>  | <b>5.89</b> (4.41-7.71)    | <b>6.59</b> (4.80-8.90)    | <b>7.41</b> (5.08-10.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.62<br>(5.68-12.1)      | <b>9.64</b> (6.20-13.7         |
| 2-day   | (2.30-3.51)<br>3.20                                                                   | (2.76-4.21)<br>3.88                            | (3.51-5.38)<br><b>5.00</b>  | (4.11-6.36)<br><b>5.93</b> | (4.81-7.97)                 | <b>7.04</b> (5.31-9.15)    | <b>7.90</b> (5.80-10.6)    | 8.91<br>(6.14-12.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.4<br>(6.90-14.4)      | 11.7<br>(7.56-16.4             |
| 3-day   | (2.60-3.88)<br>3.47                                                                   | (3.15-4.71)<br>4.20                            | (4.04-6.08)<br><b>5.41</b>  | (4.76-7.24)                | <b>7.21</b> (5.60-9.14)     | <b>8.15</b> (6.21-10.5)    | 9.18<br>(6.81-12.3)        | 10.4<br>(7.22-13.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>12.3</b> (8.20-16.9)  | <b>14.0</b> (9.06-19.4)        |
|         | (2.83-4.18)<br>3.72                                                                   | (3.42-5.07)                                    | (4.39-6.54)                 | <b>6.41</b> (5.17-7.78)    | 7.78<br>(6.08-9.82)         | <b>8.80</b> (6.74-11.3)    | <b>9.90</b> (7.38-13.2)    | <b>11.2</b> (7.81-15.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.3<br>(8.87-18.2)      | 15.1<br>(9.81-20.9)            |
| 4-day   | (3.05-4.47)<br><b>4.44</b>                                                            |                                                | 5.75<br>(4.68-6.93)         | <b>6.79</b> (5.50-8.22)    | <b>8.22</b> (6.45-10.3)     | <b>9.29</b> (7.13-11.9)    | <b>10.4</b> (7.79-13.8)    | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.0                     | 15.8                           |
|         | /n nn - 1                                                                             | (4.34-6.29)                                    | <b>6.62</b> (5.43-7.92)     | <b>7.74</b> (6.31-9.30)    | <b>9.28</b> (7.32-11.6)     | <b>10.4</b> (8.05-13.2)    | 11.7<br>(8.73-15.2)        | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.3                     | (10.3-21.8)<br>17.2            |
|         | (4.00 - 4-1                                                                           |                                                |                             | <b>8.58</b> (7.03-10.3)    | 10.2                        | 11.4                       | 12.7<br>(9.48-16.4)        | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.3                     | 18.1                           |
|         | (6.10-8.58)                                                                           |                                                | <b>9.72</b><br>(8.10-11.5)  | <b>11.0</b> (9.08-13.0)    | 12.7                        | 14.0                       | 15.4                       | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.8                     | 20.3                           |
|         |                                                                                       |                                                | 11.6<br>9.74-13.7)          | <b>12.9</b><br>(10.8-15.3) | 14.8                        | 16.1                       | 17.5                       | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.7                     | (13.4-27.4)<br>22.1            |
|         |                                                                                       |                                                | 14.0<br>11.8-16.4) (        | 15.4<br>(12.9-18.1)        | 17.3                        | 18.8                       | 20.3                       | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.2                     | 14.6-29.5)<br>24.4             |
| O-day   | <b>13.2</b> (11.2-15,3)                                                               | 14.2<br>12.1-16.5) (1                          | 16.0                        | 17.5<br>14.7-20.4) (       | 19.5                        | 21.1                       | 22.6                       | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.9-30.4) (°<br>25.4    | 16.1-32.4)<br><b>26.4</b>      |


<sup>&</sup>lt;sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Back to Top

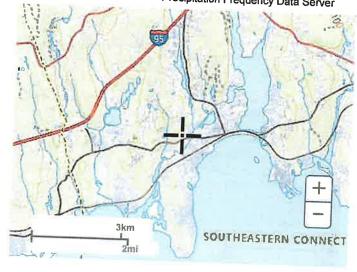
#### PF graphical

#### PDS-based depth-duration-frequency (DDF) curves Latitude: 41.3226°, Longitude: -72.2093°








NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Sep 24 19:38:46 2025

Back to Top

#### Maps & aerials

Small scale terrain







Large scale aerial

#### Precipitation Frequency Data Server



Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC, Questions@noaa.gov

Disclaimer



NOAA Atlas 14, Volume 10, Version 3 Location name: Niantic, Connecticut, USA\* Latitude: 41.3226°, Longitude: -72.2093° Elevation: 32 ft\*\* source: ESRI Maps source: USGS



## POINT PRECIPITATION FREQUENCY ESTIMATES

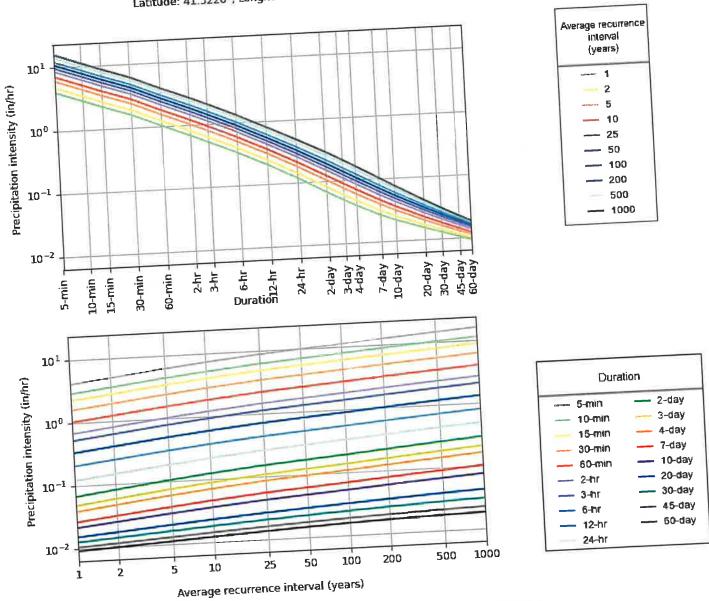
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

#### PF tabular

| Durat   | ion                                                  | based point precipitation frequency estimates with 90% confidence intervals (in inches/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                             |                                | oc/hou                     |                               |                             |
|---------|------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------------|----------------------------|-------------------------------|-----------------------------|
|         | 1                                                    | 2                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                             | nce interval                | (years)                        |                            | till men                      | es/IIOUr                    |
| 5-mi    | in 4.03<br>(3.11-5.1                                 | 4.82                                                                                    | 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.21                         | 25<br>8,70                  | 50                          | 100                            | 200                        | 500                           | 1000                        |
| 10-m    | in 2.86                                              | 3.42                                                                                    | (4.72-7.81)<br>4.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (5.51-9.24)                  | (6.46-11.5)                 | 9.82<br>(7.14-13.2)         | 11.0<br>(7.80-15.3)            | 12.3<br>(8.29-17.4         | 14.3                          | 15.9                        |
| 15-mi   | (2.20-3.6                                            | 3) (2.63-4.35)<br>2.68                                                                  | (3.34-5.54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>5.11</b><br>(3.90-6.54)   | 6.16<br>(4.57-8.18)         | 6.95<br>(5.06-9.38)         | 7.79<br>(5.52-10.8)            | 8.74                       | 10.1                          | (10.1-23                    |
|         | (1.73-2.8                                            | 5) (2.07-3.41)                                                                          | 3.41<br>(2.62-4.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.01<br>(3.06-5.14)          | 4.84<br>(3.59-6.42)         | 5.46                        | 6.11                           | 6.86                       | (6.56-14.7)<br>7.95           | (7.15-16                    |
| 30-mi   | n 1.58<br>(1.22-2.01                                 | 1.89<br>(1.46-2.41)                                                                     | 2.40<br>(1.84-3.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.82<br>(2.16-3.62)          | 3.41                        | (3.97-7.36)                 | (4.33-8.50)<br>4.30            | (4.60-9.66)                | (5.14-11.5)                   | 8.86<br>(5.60-13            |
| 60-mii  | n 1.02<br>(0.787-1.3                                 | 1.22<br>(0.941-1.55)                                                                    | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.82                         | (2.53-4.52)<br>2.20         | (2.80-5.18)<br><b>2.48</b>  | (3.05-5.98)                    | <b>4.83</b><br>(3.24-6.80) | 5.59<br>(3.62-8.09)           | <b>6.22</b> (3.94-9.1       |
| 2-hr    | 0.668<br>(0.520-0.84                                 | 0.800                                                                                   | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20                         | (1.63-2.91)                 | (1.80-3.34)                 | 2.78<br>(1.97-3.86)            | 3.11<br>(2.09-4.38)        | 3.60<br>(2.33-5.21)           | 4.01                        |
| 3-hr    | 0.516                                                | 0.619                                                                                   | (0.788-1.29)<br><b>0.785</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.921-1.52)                 | (1.08-1.90)                 | <b>1.63</b><br>(1.19-2.18)  | <b>1.82</b> (1.30-2.52)        | <b>2.05</b> (1.38-2.86)    | 2.39                          | 2.67                        |
| 6-hr    | 0.329                                                | 7) (0.483-0.776)<br>0.393                                                               | (0.611-0.989)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>0.924</b><br>(0.715-1.17) | <b>1.11</b><br>(0.837-1.46) | <b>1.26</b><br>(0.926-1.68) | 1.41<br>(1.01-1.94)            | 1.59                       | (1.55-3.42)<br>1.85           | (1.70-3.88<br><b>2.07</b>   |
| 23,1100 | 0.260-0.409                                          | (0.310-0.490)                                                                           | 0.499<br>(0.392-0.623)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.586<br>0.458-0.735)        | 0.707                       | 0.797                       | 0.892                          | (1.07-2.20)<br>1.00        | 1.17                          | (1.32-2.99                  |
| 12-hr   | (0.161-0.250                                         | 0.242<br>(0.192-0.299)<br>0.143                                                         | 0.306<br>(0.243-0.379) ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.360                        | 0.433                       | 0.488                       | (0.645-1.22)<br><b>0.547</b>   | (0.684-1.38)               | (0.767-1.65)                  | 1.31<br>(0.838-1.88         |
| 24-hr   | <b>0.119</b><br>(0.096-0.146)                        | <b>0.143</b><br>(0.115-0.175)                                                           | 0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.215                        | 0.260                       | 0.293                       | 0.398-0.738)                   | (0.421-0.838)              | <b>0.715</b><br>(0.471-1.00)  | <b>0.799</b><br>(0.514-1.14 |
| 2-day   | 0.066                                                | 0.143<br>(0.115-0.175) (0.080<br>(0.065-0.098) (0.065-0.098)                            | 0.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.123                        | 0.150                       | .221-0.381) ((              | 0.241-0.441)                   | 0.371<br>(0.255-0.501)     | <b>0.434</b><br>(0.287-0.601) | 0.487                       |
| 3-day   | 0.049                                                | 0.000                                                                                   | - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.100) [(0                   | . 110-0.1901 1/0            | 120 0 2101 10               |                                | V.Z 17                     | 0.256                         | 0 204                       |
| l-day   | 0.038                                                | 0.010                                                                                   | 7 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, 1-0, 100) (0.             | .084-0.136) ((0             | 093 0 156V I/O              |                                | 0.150                      | 0.184                         | 0.200                       |
|         | 0.026                                                | 0.00                                                                                    | 111.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.000) (0.                  | 007-0.10711/61              | 074 0 1221 Va               |                                | 0.123                      | 0.145                         | 0.404                       |
| '-day   | (0.021-0.031)                                        | (0.025-0.037)                                                                           | 0.039<br>.032-0.047) (0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.046                        | 0.055                       | 0.062                       | 0.069                          | 0.085-0.163) ((            | 0.097-0.197) (0               | .107-0.226)                 |
| 0-day   | (0.017-0.025)                                        | 0.031<br>(0.025-0.037) (0.<br>0.024<br>(0.020-0.029) (0.                                | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.035                        | 0.042                       | 0.047                       | 0.052                          | .054-0.102) (0             | 0.091                         | <b>0.102</b><br>066-0.139)  |
| - 11    | 0.045                                                | 0.04                                                                                    | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 0.042) (0.0               | /33-U.052) I/n n            | 36 0 DEDULA                 |                                | V.U36                      | 0.068                         | 0.075                       |
| - 1     | 0.012                                                | 0.040                                                                                   | The second of th | 10 0.02/) (0.0               | 21-0.0321110 n              | 22.0 0361 /0 6              |                                | 0.034                      | 0.039                         | 0.040                       |
|         | 0.010                                                | 0.011                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02 () ((0.0                | 10-0.024) I/O O             | 17 0 0271 /0 0              | established decreased from the | 0.026                      | 0.028                         | 0.000                       |
|         | 0.000                                                |                                                                                         | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 5.010) [[0.0               | 12-0.019)  (0.04            | 3 0 0041 100 0              |                                | 0.019                      | 0.024                         | 0.000                       |
| uay (   | 0.007-0.010) (0<br>frequency (PF<br>arenthesis are I | 0.009<br>0.008-0.011) (0.0<br>) estimates in this                                       | 09-0 012) (0 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.012                        | 0.013 0                     | .014                        | 0.025) (0.0                    | 114-0.025) (0.0            | 014-0.028) (0.0               | 14-0.029)                   |


<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

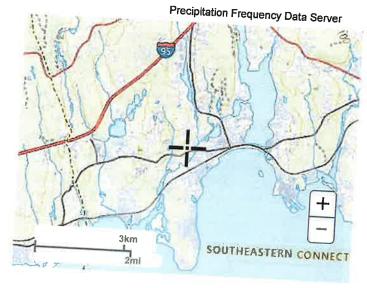
Back to Top

#### PF graphical

#### PDS-based intensity-duration-frequency (IDF) curves Latitude: 41.3226°, Longitude: -72.2093°



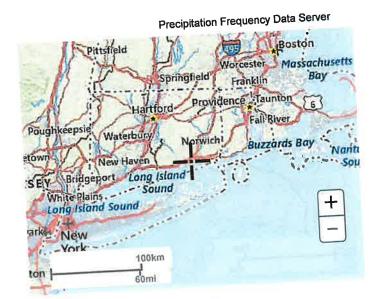
NOAA Atlas 14, Volume 10, Version 3


Created (GMT): Wed Sep 24 19:40:26 2025

Back to Top

#### Maps & aerials

Small scale terrain


1







Large scale aerial



Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration National Weather Service

National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

|  |  | .8 |  |
|--|--|----|--|

