

1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

DRAINAGE REPORT Stormwater Mitigation Plan

October 11, 2021 REV October 26, 2021

Property Located at:

121 Upper Pattagansett Rd. East Lyme, CT 06333

Prepared For:

Project: Nottingham Hills Subdivision Phase V

English Harbor Asset Management, LLC 38 Granite Street New London, CT 06320

Prepared By:

Timothy A. May, P.E. May Engineering, LLC 1297 Rte 163 Oakdale, CT 03670

1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

SITE DESCRIPTION:

The site is a 64-acre wooded parcel located along the northern shore of Pattagansett Lake. Specifically, the site is located at 121 Upper Pattagansett Rd in the town of East Lyme, CT. The parcel was previously used as a camp for the Girl Scouts of America. The existing site is partially developed with paved/gravel roads and camp buildings. The site is wooded with mature deciduous trees. There are slopes ranging from 3% to 12% The soil type is primarily a hydraulic soil group B consisting of Canton-Charlton, Hinkley gravel and Charlton-Hollis series. The soil types were evaluated for their permeability and have a moderate to fast infiltration rate. The proposed site development is for 8 residential subdivision parcels, and one parcel to remain as-is.

The drainage areas for the proposed site development is split into two drainage areas labeled Drainage Area A (30.8 ac) and Drainage Area B (13.5 ac)(see drawing titled Drainage Areas). Drainage Area A is a 30.8 ac drainage area where water flows into a wetland settling basin on the north side of Upper Pattagansett Rd, then through a 12" re-enforced concrete culvert, then into Pattagansett Lake. Primarily, the stormwater flows are shallow concentrated flows that flow north to south across Drainage Area A, with limited channel flows for the last 250 ft before the wetland settling basin. There are some instances of intermittent channelized flows along the paved/gravel road, then the flows change back to shallow concentrated flows. Drainage Area B is a 13.5 ac drainage area that is primarily overland flow and water does not typically flow off the property due to topographic features along Upper Pattagansett Rd that contain stormwater on site.

RATIONALE FOR DESIGN:

A drainage analysis is required to evaluate stormwater run-off associated with site development. A site evaluation along with a drainage analysis were conducted for estimating the storm water run-off. The site currently has 18 buildings in total with roofs, along with 45 wooden platform (tents/decks) which have a high run-off coefficient. There are packed gravel roads throughout Drainage Areas A & B, which have a high run-off coefficient. The proposed development for Drainage Area A removes 7 buildings, 10 tent platforms (8,830 sf impervious area) and gravel roads (46,472 sf). For proposed Drainage Area B, 2 buildings, 6 tent platforms (4,750 sf of impervious area) and 13,000 sf of gravel roads are to be removed.

The proposed development for Drainage Area A involves constructing 3 residential building lots and Drainage Area B involves constructing 5 residential lots, each with a 2,400 sf (roof area) home. Each home's roof drains are piped to a rain garden sized for 1" water quality volume. The paved driveways are sloped to drain down gradient through check dams to slow velocities, then into the woods.

The stormwater drainage analysis will compare the existing developed land to the proposed developed parcels which have the proposed buildings added and the old structures removed. Limits of clearing calculated for the proposed parcels will factor the change from wooded area to lawn area. Also, the extensive gravel drives and parking areas once removed will be seeded with grass to change the semi impervious area to a more pervious area. The rain gardens are very effective at retaining storm water from impervious areas and infiltrating large quantities of the roof stormwater run-off. This reduction in run-off leads to overall reduction in the amount of storm water and these BMPs increase water quality for water that flows into Pattagansett Lake.

1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

METHODOLOGY AND RESULTS

Drainage Analysis. The SCS TR-20 drainage analysis method is used to determine the storm water runoff flow amounts. The storm frequency values used for the calculations herein include the 2-year, 5-year 10-year, 25-year, 50-year and 100-year storm rainfall event. The storm water model software used for this analysis is <u>HydroCAD® 10.00-22</u> in which the SCS TR-20 method was used.

The following are the tabulated results for existing and proposed storm events:

			_		_
1	2122	~~	A 10	\sim	Л
	4111/				-
	aina	.90	,	vu	, ,

	Storm Event	Rain Fall	Flow	Peak Flow	Volume	Volume
		inches	CFS	 ≪ reduction	(acre-feet)	% reductio
Area A	2-year	3.4	4.34		0.972	
Existing	5 year	4.3	9.34		1.791	
- 5%	10 year	4.8	13.94		2.516	
	25 year	5.7	21.78		3.745	
	50 year	6.3	28		4.719	
-	100 year	7.1	35.62		5.919	
0	_					
Area A	2-year	3.4	3.8	12.4%	0.887	8.7%
Proposed	5 year	4.3	8.5	9.0%	1.67	6.8%
	10 year	4.8	12.91	7.4%	2.37	5.8%
	25 year	5.7	20.52	5.8%	3.56	4.9%
	50 year	6.3	26.57	5.1%	4.5	4.6%
	100 year	7.1	34.03	4.5%	5.68	4.0%

Drainage Area B

	Storm Event	Rain Fall	Flow	Peak Flow	Volume	Volume
		inches	CFS	% reduction	(acre-feet)	% reduction
Area B	2-year	3.4	3.55		0.596	
Existing	5 year	4.3	7.15		1.08	
***	10 year	4.8	9.45		1.387	
	25 year	5.7	13.97		1.992	
	50 year	6.3	17.19		2.427	
	100 year	7.1	21.68		3.039	
Area B	2-year	3.4	3.19	10.1%	0.552	7.4%
Proposed	5 year	4.3	6.64	7.1%	1.018	5.7%
	10 year	4.8	8.88	6.0%	1.316	5.1%
	25 year	5.7	13.28	4.9%	1.906	4.3%
	50 year	6.3	16.44	4.4%	2.331	4.0%
	100 year	7.1	20.86	3.8%	2.931	3.6%

1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

SUMMARY

The proposed Nottingham Hills Subdivision Phase V development plan results in a significant reduction of both storm water peak flows and volumes for Drainage Areas A and B. The plan of development for the 8 residential homes introduces storm water BMPs such as rain gardens and check dams along driveways. Removal of impervious areas such as buildings and tent platforms, along with gravel roads and parking areas, will increase the water quality significantly.

Area A Existing Nottingham Hills Subdivision Phase Type III 24-hr 100 year Rainfall=7.10" Prepared by May Engineering, LLC Timothy May, PE Printed 10/26/2021 HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment A - existing: 30.8 AC

Runoff = 35.62 cfs @ 12.84 hrs, Volume= 5.919 af, Depth> 2.31"

Area	(ac) C	N Desc	cription		
1.	1.870 85 Gravel roads, HSG B				
0.	203	8 Root	fs, HSG B		
0.	326	98 Root	fs, HSG B		
4.	591 6	37 Brus	h, Poor, H	SG B	
23.	810 5	55 Woo	ds, Good,	HSG B	
30.	800 5	59 Wei	ghted Aver	age	
30.	271	98.2	8% Pervio	us Area	
0.	529	1.72	% Impervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
23.2	40	0.0100	0.03		Sheet Flow, sheet flow upper
					Woods: Dense underbrush n= 0.800 P2= 3.35"
12.9	1,650	0.1810	2.13		Shallow Concentrated Flow, sloped woodland
					Woodland Kv= 5.0 fps
9.7	400	0.0750	0.68		Shallow Concentrated Flow, woodland gental slope
					Forest w/Heavy Litter Kv= 2.5 fps
12.5	348	0.0086	0.46		Shallow Concentrated Flow, level ground
					Woodland Kv= 5.0 fps
58.3	2,438	Total			

Area A Proposed Nottingham Hills Subdivision Pha Type III 24-hr 100 year Rainfall=7.10" Prepared by May Engineering, LLC Timothy May, PE Printed 10/23/2021 HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment A - Proposed: 30.8 AC

Runoff = 34.03 cfs @ 12.84 hrs, Volume= 5.681 af, Depth> 2.21"

	Area	(ac) (N Des	cription		
*	1.	153	85 grav	el road rer	naining	
*	0.	361	98 Řem	nain Bldg d	ecks - Roo	fs, HSG B
*	0.	576	98 Pave	ed parking	Driveways	, HSG B
*	0.	170	98 Rev	CN Rain (3arden, ȟS	G B
*	5.	640	58 Law	n, HSG B		
	22.	900	55 Woo	ds, Good,	HSG B	
	30.	800	58 Wei	ghted Aver	age	
	29.	693	96.4	1% Pervio	us Area	
	1.	107	3.59	% Impervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	23.2	40	0.0100	0.03		Sheet Flow, sheet flow upper
						Woods: Dense underbrush n= 0.800 P2= 3.35"
	12.9	1,650	0.1810	2.13		Shallow Concentrated Flow, sloped woodland
						Woodland Kv= 5.0 fps
	9.7	400	0.0750	0.68		Shallow Concentrated Flow, woodland gental slope
						Forest w/Heavy Litter Kv= 2.5 fps
	12.5	348	0.0086	0.46		Shallow Concentrated Flow, level ground
						Woodland Kv= 5.0 fps
	58.3	2,438	Total			

Events for Subcatchment A - existing: 30.8 AC

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
2-year	3.40	4.34	0.972	0.38
5-year	4.20	9.34	1.791	0.70
10 year	4.80	13.94	2.516	0.98
25 year	5.70	21.78	3.745	1.46
50-year	6.35	28.00	4.719	1.84
100 year	7.10	35.62	5.919	2.31

Events for Subcatchment A - Proposed: 30.8 AC

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
2-year	3.40	3.80	0.887	0.35
5-year	4.20	8.50	1.670	0.65
10 year	4.80	12.91	2.369	0.92
25 year	5.70	20.52	3.560	1.39
50-year	6.35	26.57	4.509	1.76
100 year	7.10	34.03	5.681	2.21

Area B Existing Nottingham Hills Subdivision Phase Type III 24-hr 100 year Rainfall=7.10" Prepared by May Engineering, LLC Timothy May, PE Printed 10/26/2021 HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment B - existing: 13.5 AC

Runoff = 21.68 cfs @ 12.63 hrs, Volume= 3.039 af, Depth> 2.70"

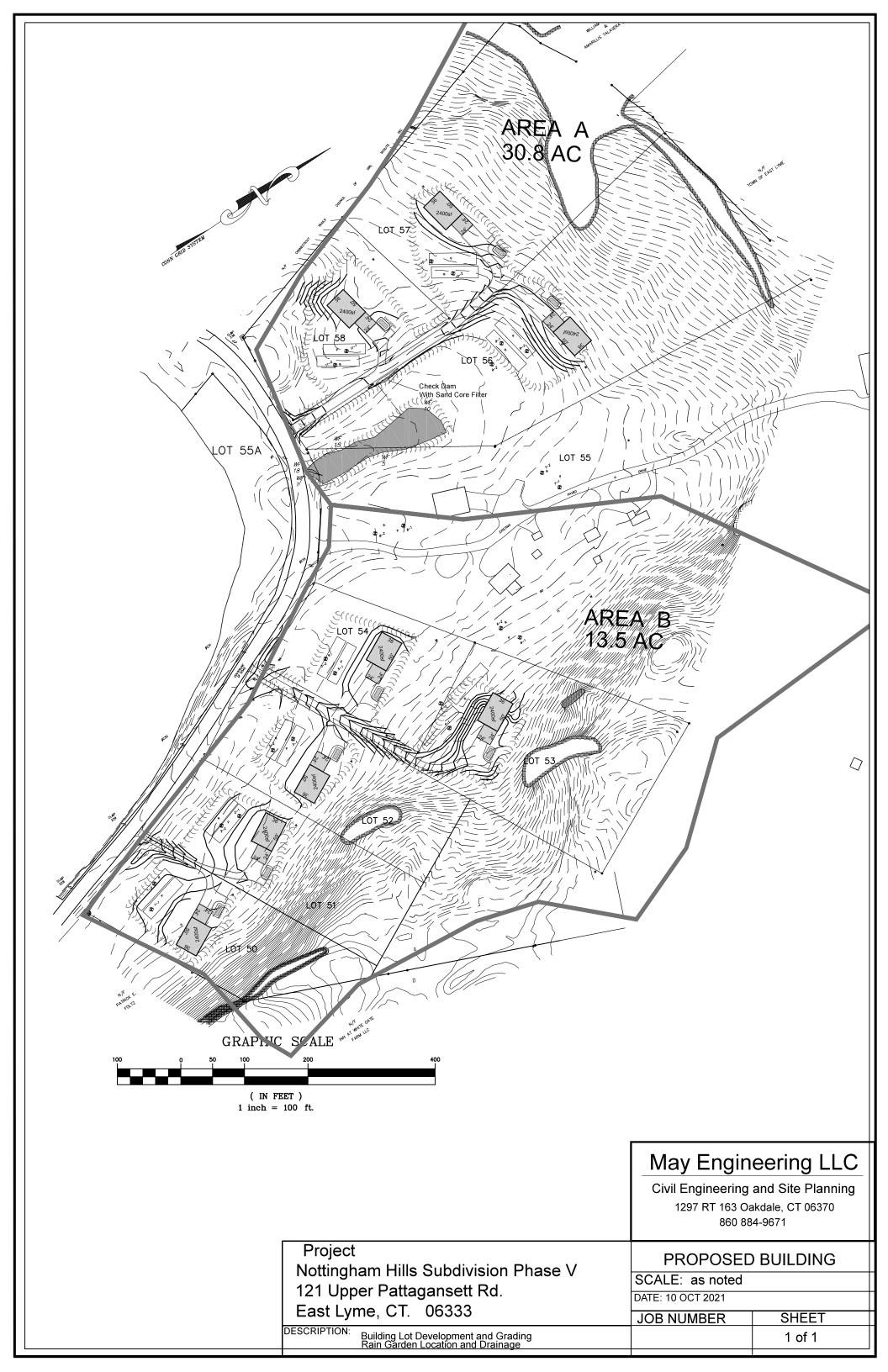
	Area	(ac) C	N Des	cription		
*	0.	203 9	98 Roo	fs tent dec	ks , HSG B	
	1.	067	35 Grav	vel roads, l	HSG B	
	12.	230	30 Woo	ods, Fair, F	ISG B	
	13.	500 (33 Wei	ghted Aver	age	
	13.	297	98.5	0% Pervio	us Area	
	0.	203	1.50	% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.4	30	0.0100	0.03		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.35"
	3.1	326	0.1200	1.73		Shallow Concentrated Flow, sloped woodland
						Woodland Kv= 5.0 fps
	22.4	600	0.0080	0.45		Shallow Concentrated Flow, level ground
_						Woodland Kv= 5.0 fps
	43.9	956	Total			

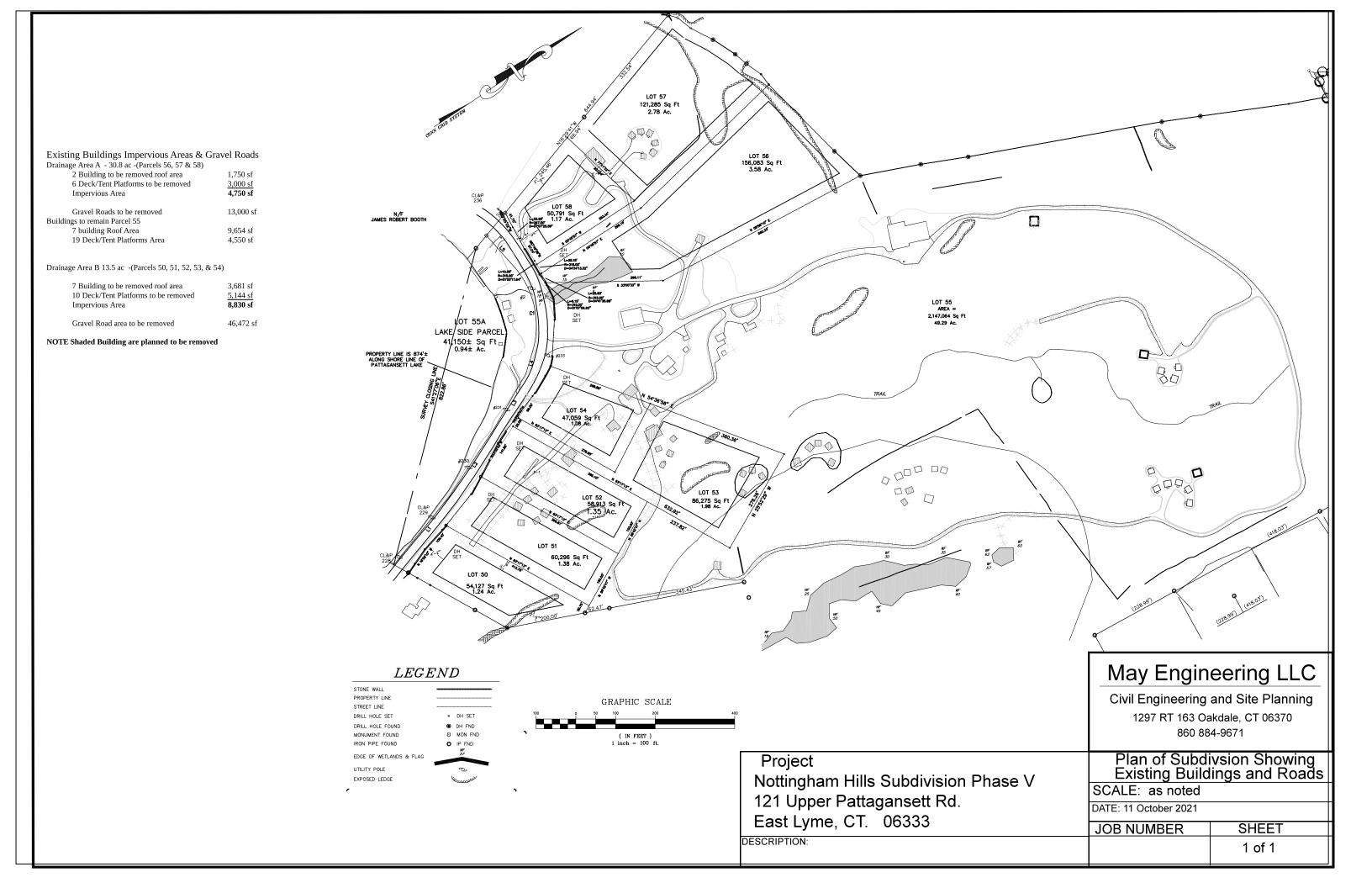
Area B Proposedg Nottingham Hills Subdivision Pha Type III 24-hr 100 year Rainfall=7.10" Prepared by May Engineering, LLC Timothy May, PE Printed 10/19/2021 HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLC

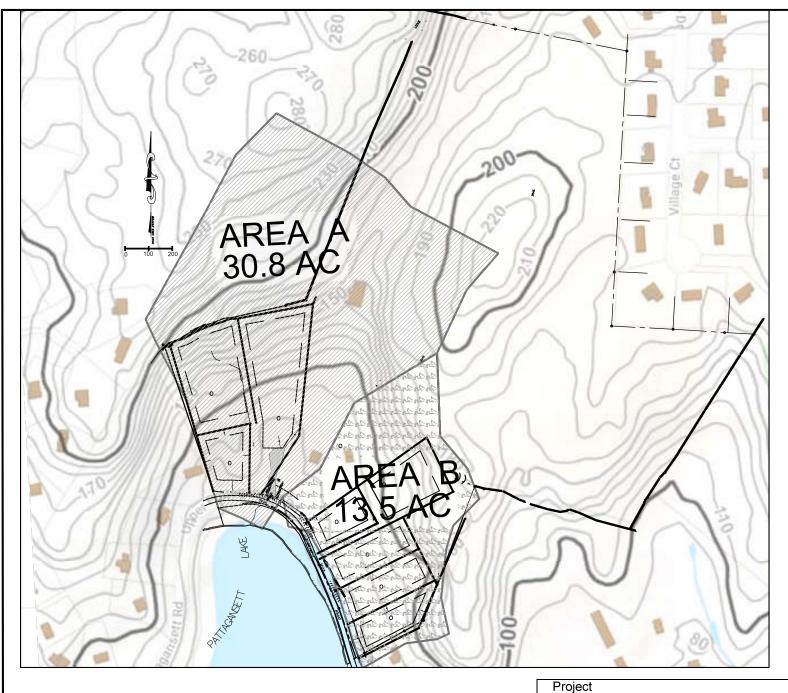
Summary for Subcatchment B - Proposed: 13.5 AC

Runoff = 20.86 cfs @ 12.63 hrs, Volume= 2.931 af, Depth> 2.61"

_	Area	(ac)	CN	Desc	cription		
*	0.	275	98	REV	roof to R	ain gardens	3
*	0.	264	98	Drive	eways Pav	ed, HSG B	
*	1.	200	60	Lawr	ns grass, F	HSG B	
_	11.	761	60	Woo	ds, Fair, F	ISG B	
	13.	500	62	Weig	ghted Aver	age	
	12.	961		96.0	1% Pervio	us Area	
	0.	539		3.99°	% Impervi	ous Area	
	Tc	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.4	30	0.	0100	0.03		Sheet Flow,
							Woods: Dense underbrush n= 0.800 P2= 3.35"
	3.1	326	0.	1200	1.73		Shallow Concentrated Flow, sloped woodland
							Woodland Kv= 5.0 fps
	22.4	600	0.	0800	0.45		Shallow Concentrated Flow, level ground
_							Woodland Kv= 5.0 fps
	43.9	956	To	otal			


Area B Existing Nottingham Hills Subdivision Phase Type III 24-hr 100 year Rainfall=7.10"
Prepared by May Engineering, LLC Timothy May, PE Printed 10/10/2021
HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLC


Events for Subcatchment B - existing: 13.5 AC


Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
2-year	3.40	3.55	0.596	0.53
5 year	4.30	7.15	1.080	0.96
10 year	4.80	9.45	1.387	1.23
25 year	5.70	13.97	1.992	1.77
50 year	6.30	17.19	2.427	2.16
100 year	7.10	21.68	3.039	2.70

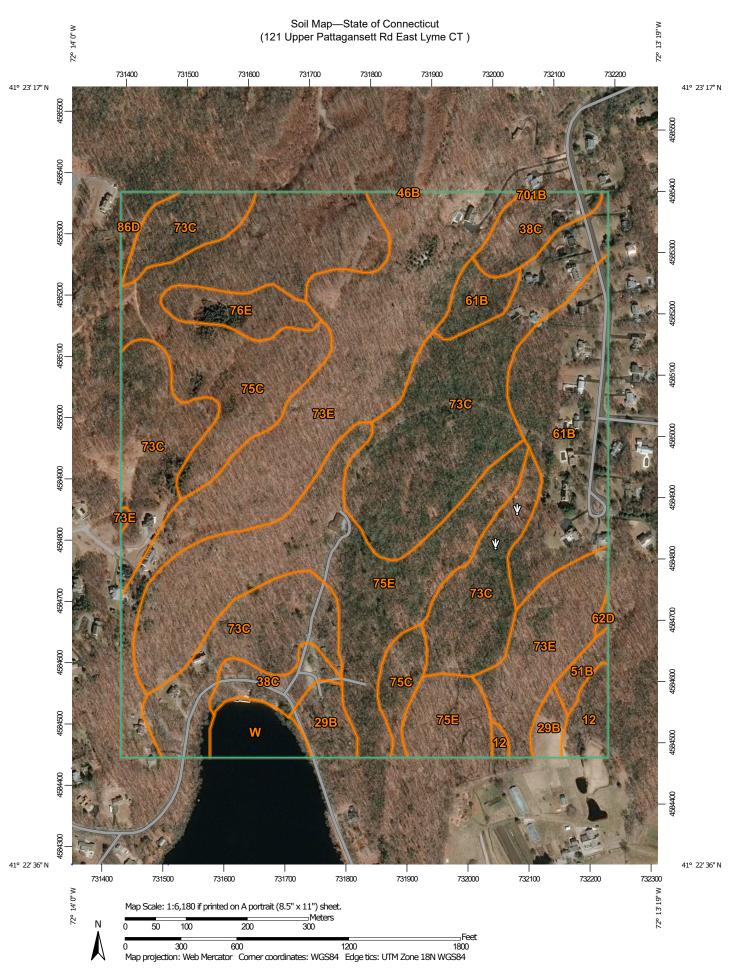
Events for Subcatchment B - Proposed: 13.5 AC

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
2-year	3.40	3.19	0.552	0.49
5 year	4.30	6.64	1.018	0.91
10 year	4.80	8.88	1.316	1.17
25 year	5.70	13.28	1.906	1.69
50 year	6.30	16.44	2.331	2.07
100 year	7.10	20.86	2.931	2.61

May Engineering LLC

Civil Engineering and Site Planning 1297 RT 163 Oakdale, CT 06370 860 884-9671

Nottingham Hills Subdivision Phase V 121 Upper Pattagansett Rd. East Lyme, CT. 06333


DRAINAGE AREAS

SCALE: 1"=400' & as noted

DATE: 16 AUG 2021

JOB NUMBER SHEET

DESCRIPTION: 1 of 1

MAP LEGEND

â

00

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut Survey Area Data: Version 20, Jun 9, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

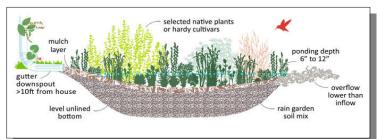
Date(s) aerial images were photographed: Mar 20, 2019—Mar 27, 2019

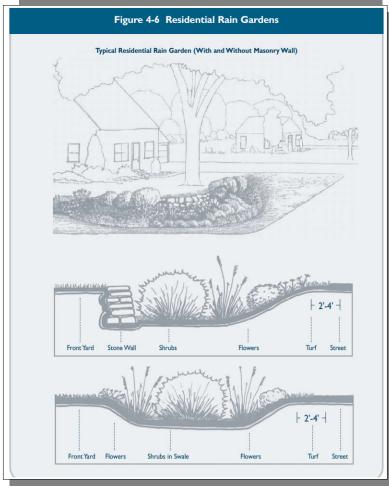
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
12	Raypol silt loam	2.5	1.3%
29B	Agawam fine sandy loam, 3 to 8 percent slopes	3.6	2.0%
38C	Hinckley loamy sand, 3 to 15 percent slopes	6.6	3.6%
46B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	0.0	0.0%
51B	Sutton fine sandy loam, 0 to 8 percent slopes, very stony	1.2	0.6%
61B	Canton and Charlton fine sandy loams, 0 to 8 percent slopes, very stony	18.1	9.9%
62D Canton and Charlton fill sandy loams, 15 to 3 percent slopes, extrestony		0.2	0.1%
73C Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky		51.6	28.2%
73E	Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky	36.5	20.0%
75C	Hollis-Chatfield-Rock outcrop complex, 3 to 15 percent slopes	24.9	13.6%
75E	Hollis-Chatfield-Rock outcrop complex, 15 to 45 percent slopes	29.5	16.2%
76E	Rock outcrop-Hollis complex, 3 to 45 percent slopes	3.8	2.1%
Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony		1.2	0.6%
701B	Ninigret fine sandy loam, 3 to 8 percent slopes	0.1	0.0%
W	Water	3.2	1.7%
Totals for Area of Interest		182.8	100.0%

Rain Gardens


Water Quality Volume rainfall event 1" WQV rainfall


where:

P = design precipitation, inches (1" for water quality storm) A = drainage area (*acres*) roof area 2,400 sf >> 0.055 ac

V = runoff volume CF V = (1"/12) ft x 2400 sf = 200 CF

Rain Garden size 10-feet wide X 20 -feet long x 1-foot deep= 200CF

