May Engineering, LLC Civil Engineering, Site Planning, and Consulting 1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

DRAINAGE REPORT Stormwater Mitigation Plan

October 11, 2021 REV November 5, 2021

Property Located at:

121 Upper Pattagansett Rd. East Lyme, CT 06333

Prepared For: Project: Nottingham Hills Subdivision Phase V

English Harbor Asset Management, LLC 38 Granite Street New London, CT 06320

Prepared By:

Timothy A. May, P.E. May Engineering, LLC 1297 Rte 163 Oakdale, CT 03670

Drainage Report for Nottingham Hills Subdivision Phase V 121 Upper Pattagansett Rd. East Lyme

Civil Engineering, Site Planning, and Consulting 1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

SITE DESCRIPTION:

The site is a 64-acre wooded parcel located along the northern shore of Pattagansett Lake. Specifically, the site is located at 121 Upper Pattagansett Rd in the town of East Lyme, CT. The parcel was previously used as a camp for the Girl Scouts of America. The existing site is partially developed with paved/gravel roads and camp buildings. The site is wooded with mature deciduous trees. There are slopes ranging from 3% to 12% The soil type is primarily a hydraulic soil group B consisting of Canton-Charlton, Hinkley gravel and Charlton-Hollis series. The soil types were evaluated for their permeability and have a moderate to fast infiltration rate. The proposed site development is for 8 residential subdivision parcels, and one parcel to remain as-is.

The drainage areas for the proposed site development is split into two drainage areas labeled Drainage Area A (30.8 ac) and Drainage Area B (13.5 ac)(see drawing titled Drainage Areas). Drainage Area A is a 30.8 ac drainage area where water flows into a wetland settling basin on the north side of Upper Pattagansett Rd, then through a 12" re-enforced concrete culvert, then into Pattagansett Lake. Primarily, the stormwater flows are shallow concentrated flows that flow north to south across Drainage Area A, with limited channel flows for the last 250 ft before the wetland settling basin. There are some instances of intermittent channelized flows along the paved/gravel road, then the flows change back to shallow concentrated flows. Drainage Area B is a 13.5 ac drainage area that is primarily overland flow and water does not typically flow off the property due to topographic features along Upper Pattagansett Rd that contain stormwater on site.

RATIONALE FOR DESIGN:

A drainage analysis is required to evaluate stormwater run-off associated with site development A site evaluation along with a drainage analysis were conducted for estimating the storm water run-off. The site currently has 18 buildings in total with roofs, along with 45 wooden platform (tents/decks) which have a high run-off coefficient. There are paved and packed gravel roads throughout Drainage Areas A & B, which have a high run-off coefficient. Area A has 4 existing building 9,600 sf (0.22ac). The proposed development for Drainage Area A removes 2 buildings, 6 tent platforms (5,227sf (0.12ac) impervious area), and all gravel roads removed. For Area A, 2 buildings and all tent platforms 16,000 sf (0.367ac) of impervious area and 13,000 sf (0.30 ac) of gravel roads are to be removed. For proposed Area B, impervious areas; 7 buildings 2,500 sf (0.055 ac), paved area 9,600 sf (0.20 ac) are to remain and all gravel roads in Area B are to be removed.

The proposed development for Drainage Area A involves constructing 3 residential building lots and Drainage Area B involves constructing 5 residential lots, each with a 2,400 sf (roof area) home. Each home's roof drains are piped to a rain garden sized for 1" water quality volume. The paved driveways are sloped to drain down gradient through check dams to slow velocities, then into the woods.

The stormwater drainage analysis will compare the existing developed land to the proposed developed parcels which have the proposed buildings added and the old structures removed. Limits of clearing calculated for the proposed parcels will factor the change from wooded area to lawn area. Also, the extensive gravel drives and parking areas once removed will be seeded with grass to change the semi impervious area to a more pervious area. The rain gardens are very effective at retaining storm water from impervious areas and infiltrating large quantities of the roof stormwater run-off. This reduction in run-off leads to overall reduction in the amount of storm water and these BMPs increase water quality for water that flows into Pattagansett Lake.

May Engineering, LLC

Civil Engineering, Site Planning, and Consulting 1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

METHODOLOGY AND RESULTS

Drainage Analysis. The SCS TR-20 drainage analysis method is used to determine the storm water runoff flow amounts. The storm frequency values used for the calculations herein include the 2-year, 5-year 10-year, 25-year, 50-year and 100-year storm rainfall event. The storm water model software used for this analysis is <u>HydroCAD® 10.00-22</u> in which the SCS TR-20 method was used.

The following are the tabulated results for existing and proposed storm events:

	Storm Event	Rain Fall	Flow	Peak Flow	Volume	Volume
	- N	inches	CFS	% reduction	(acre-feet)	% reduction
Area A	2-year	3.4	3.8		0.887	
Existing	5 year	4.3	8.5		1.66	
	10 year	4.8	12.91		2.36	
	25 year	5.7	20.52		3.56	
	50 year	6.3	26.57		4.5	
	100 year	7.1	34.03	5.68		
-						
Area A	2-year	3.4	3.29	13.4%	0.806	9.1%
Proposed	5 year	4.3	7.69	9.5%	1.55	6.6%
	10 year	4.8	11.9	7.8%	2.22	5.9%
	25 year	5.7	19.26	6.1%	3.3	7.3%
	50 year	6.3	25.16	5.3%	4.3	4.4%
	100 year	7.1	32.45	4.6%	5.44	4.2%

Drainage Area A

Drainage Area B

	Storm Event	Rain Fall	Flow	Peak Flow	Volume	Volume
		inches	CFS	% reduction	(acre-feet)	% reduction
Area B	2-year	3.4	2.23		0.51	
Existing	5 year	4.3	5.21		0.958	
	10 year	4.8	7.21		1.246	
	25 year	5.7	11.28		1.82	
	50 year	6.3	14.23		2.236	
	100 year	7.1	18.41		2.824	
Area B	2-year	3.4	1.94	13.0%	0.392	23.1%
Proposed	5 year	4.3	4.74	9.0%	0.785	18.1%
-	10 year	4.8	6.66	7.6%	1.043	16.3%
	25 year	5.7	10.59	6.1%	1.567	13.9%
	50 year	6.3	13.46	5.4%	1.91	14.6%
	100 year	7.1	17.54	4.7%	2.49	11.8%

Drainage Report for Nottingham Hills Subdivision Phase V 121 Upper Pattagansett Rd. East Lyme

May Engineering, LLC

Civil Engineering, Site Planning, and Consulting 1297 RT 163 Oakdale, CT 06370 Cell: 860 884-9671 Email: mayengineering@sbcglobal.net

SUMMARY

The proposed Nottingham Hills Subdivision Phase V development plan results in a significant reduction of both storm water peak flows and volumes for Drainage Areas A and B. The plan of development for the 8 residential homes introduces storm water BMPs such as rain gardens and check dams along driveways. Removal of impervious areas such as buildings and tent platforms, along with gravel roads and parking areas, will increase the water quality significantly.

Area A Existing Nottingham Hills Subdivision Phase Type III 24-hr100 year Rainfall=7.10"Prepared by May Engineering, LLC Timothy May, PEPrinted 11/5/2021HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLCPrinted 11/5/2021

Summary for Subcatchment A - existing: 30.8 AC

Runoff = 34.03 cfs @ 12.84 hrs, Volume= 5.681 af, Depth> 2.21"

_	Area	(ac)	CN	Desc	cription		
	0.	290	85	Grav	vel roads, l	HSG B	
*	0.	200	98	Pave	ed Roads		
*	0.	040	98	Roof	s, Tent pla	atforms	
	0.	220	98	Roof	s, HSG B		
	4.	400	67	Brus	h, Poor, H	SG B	
	25.	650	55	Woo	ds, Good,	HSG B	
	30.	800	58	Weig	ghted Aver	age	
	30.	340		98.5	1% Pervio	us Area	
	0.	460		1.49	% Impervi	ous Area	
	Тс	Lengt	h :	Slope	Velocity	Capacity	Description
	(min)	(fee	:)	(ft/ft)	(ft/sec)	(cfs)	
	23.2	4	0 0	.0100	0.03		Sheet Flow, sheet flow upper
							Woods: Dense underbrush n= 0.800 P2= 3.35"
	12.9	1,65	0 0	.1810	2.13		Shallow Concentrated Flow, sloped woodland
							Woodland Kv= 5.0 fps
	9.7	40	0 0	.0750	0.68		Shallow Concentrated Flow, woodland gental slope
							Forest w/Heavy Litter Kv= 2.5 fps
	12.5	34	80	.0086	0.46		Shallow Concentrated Flow, level ground
							Woodland Kv= 5.0 fps
	58.3	2,43	8 T	otal			

Events for Subcatchment A - existing: 30.8 AC

Event	Rainfall (inches)	Runoff (cfs)	Volume (acre-feet)	Depth (inches)
2-year	3.40	3.80	0.887	0.35
5-year	4.20	8.50	1.670	0.65
10 year	4.80	12.91	2.369	0.92
25 year	5.70	20.52	3.560	1.39
50-year	6.35	26.57	4.509	1.76
100 year	7.10	34.03	5.681	2.21

Area A Proposed Nottingham Hills Subdivision Pha Type III 24-hr 100 year Rainfall=7.10"Prepared by May Engineering, LLC Timothy May, PEPrinted 11/5/2021HydroCAD® 10.00-22 s/n 03977 © 2018 HydroCAD Software Solutions LLCPrinted 11/5/2021

Summary for Subcatchment A - Proposed: 30.8 AC

Runoff = 32.45 cfs @ 12.85 hrs, Volume= 5.446 af, Depth> 2.12"

_	Area	(ac)	CN D	escription		
*	0.	000	85 gi	avel road re	maining	
*	0.	200	98 P	aved Road	U	
*	0.	120	98 R	emain Bldg o	decks - Roo	fs, HSG B
*	0.	150		aved parking		
*	0.	170		ev CN Rain		
*	3.	200		awn, HSG B	,	
		500		ush, Poor, F	ISG B	
	24.	460	55 W	oods, Good	, HSG B	
	30.	800	57 W	eighted Ave	rade	
		160		7.92% Pervic	•	
		640	2	08% Imperv	ious Area	
	•					
	Тс	Length	l Slop	e Velocity	Capacity	Description
	(min)	(feet)			(cfs)	
	23.2	40	0.010	0 0.03		Sheet Flow, sheet flow upper
						Woods: Dense underbrush n= 0.800 P2= 3.35"
	12.9	1,650	0.18	0 2.13		Shallow Concentrated Flow, sloped woodland
		.,				Woodland Kv= 5.0 fps
	9.7	400	0.075	0.68		Shallow Concentrated Flow, woodland gental slope
	•		0.010	0.00		Forest w/Heavy Litter Kv= 2.5 fps
	12.5	348	0.008	0.46		Shallow Concentrated Flow, level ground
						Woodland $Kv = 5.0 \text{ fps}$
	58.3	2,438	Total			•

Events for Subcatchment A - Proposed: 30.8 AC

Event	Rainfall (inches)	Runoff (cfs)	Volume (acre-feet)	Depth (inches)
2-year	3.40	3.29	0.806	0.31
5-year	4.20	7.69	1.552	0.60
10 year	4.80	11.90	2.224	0.87
25 year	5.70	19.26	3.378	1.32
50-year	6.35	25.16	4.302	1.68
100 year	7.10	32.45	5.446	2.12

Area B Existing Nottingham Hills Subdivision PhaseType III 24-hr100 year Rainfall=7.10"Prepared by May Engineering, LLCTimothy May, PEPrinted11/5/2021HydroCAD® 10.00-22s/n 03977© 2018 HydroCAD Software Solutions LLCPrinted11/5/2021

Summary for Subcatchment B - existing: 13.5 AC

Runoff = 18.41 cfs @ 12.64 hrs, Volume= 2.612 af, Depth> 2.32"

_	Area	(ac)	CN	Desc	cription			
*	0.	350	98	Roof	s Cabins ⁻	Ttent decks	; , HSG B	
*	0.	230	98	Pave	ed roads, H	ISG B		
	0.	800	85	Grav	/el roads, l	HSG B		
_	12.120 55 Woods, Good, HSG B							
	13.500 59 Weighted Average							
	12.	920		95.7	0% Pervio	us Area		
0.580 4.30% Impervious Area					% Impervi	ous Area		
	Tc	Length		ope	Velocity	Capacity	Description	
_	(min)	(feet) (f	ft/ft)	(ft/sec)	(cfs)		
	18.4	30	0.0	100	0.03		Sheet Flow,	
							Woods: Dense underbrush n= 0.800 P2= 3.35"	
	3.1	326	6 0.12	200	1.73		Shallow Concentrated Flow, sloped woodland	
							Woodland Kv= 5.0 fps	
	22.4	600	0.0	080	0.45		Shallow Concentrated Flow, level ground	
_							Woodland Kv= 5.0 fps	
	43.9	956	5 Tot	al				

Events for Subcatchment B - existing: 13.5 AC

Event	Rainfall (inches)	Runoff (cfs)	Volume (acre-feet)	Depth (inches)
2-year	3.40	2.23	0.431	0.38
5 year	4.30	5.21	0.843	0.75
10 year	4.80	7.21	1.112	0.99
25 year	5.70	11.28	1.654	1.47
50 year	6.30	14.23	2.049	1.82
100 year	7.10	18.41	2.612	2.32

Area B Proposedg Nottingham Hills Subdivision PhaType III 24-hr100 year Rainfall=7.10"Prepared by May Engineering, LLCTimothy May, PEPrinted11/5/2021HydroCAD® 10.00-22s/n 03977© 2018 HydroCAD Software Solutions LLCPrinted11/5/2021

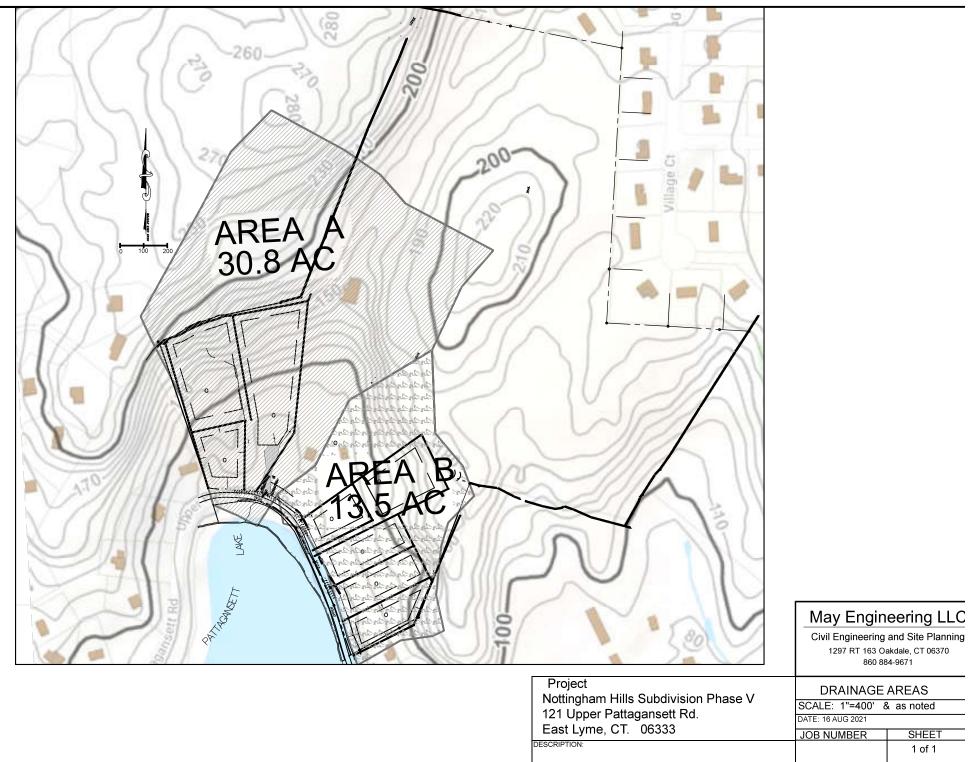
Summary for Subcatchment B - Proposed: 13.5 AC

Runoff = 17.60 cfs @ 12.65 hrs, Volume= 2.507 af, Depth> 2.23"

	Area	(ac)	CN Des	cription				
*	0.	057	98 Roc	ofs Building	to Remain			
*	0.	263			ain gardens	3		
*	0.	230	98 Driv	eways Pav	/ed, HSG B			
*	4.	500	59 Law	/ns grass, l	HSG B			
	8.	450	55 Wo	ods, Good,	HSG B			
	13.500 58 Weighted Average							
	12.	950	95.9	3% Pervio	us Area			
	0.	550	4.07	7% Impervi	ous Area			
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	18.4	30	0.0100	0.03		Sheet Flow,		
						Woods: Dense underbrush n= 0.800 P2= 3.35"		
	3.1	326	0.1200	1.73		Shallow Concentrated Flow, sloped woodland		
						Woodland Kv= 5.0 fps		
	22.4	600	0.0080	0.45		Shallow Concentrated Flow, level ground		
	22.7		0.0000					
_	22.7					Woodland Kv= 5.0 fps		

Events for Subcatchment B - Proposed: 13.5 AC

Event	Rainfall (inches)	Runoff (cfs)	Volume (acre-feet)	Depth (inches)
2-year	3.40	1.94	0.392	0.35
5 year	4.30	4.74	0.785	0.70
10 year	4.80	6.66	1.043	0.93
25 year	5.70	10.59	1.567	1.40
50 year	6.30	13.46	1.951	1.74
100 year	7.10	17.54	2.499	2.23


National Cooperative Soil Survey

Conservation Service

MAP L	EGEND	MAP INFORMATION	
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:12,000.	
	9	, , , , , , , , , , , , , , , , , , , ,	
 Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
12	Raypol silt loam	2.5	1.3%
29B	Agawam fine sandy loam, 3 to 8 percent slopes	3.6	2.0%
38C	Hinckley loamy sand, 3 to 15 percent slopes	6.6	3.6%
46B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	0.0	0.0%
51B	Sutton fine sandy loam, 0 to 8 percent slopes, very stony	1.2	0.6%
61B	Canton and Charlton fine sandy loams, 0 to 8 percent slopes, very stony	18.1	9.9%
62D	Canton and Charlton fine sandy loams, 15 to 35 percent slopes, extremely stony	0.2	0.1%
73C	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	51.6	28.2%
73E	Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky	36.5	20.0%
75C	Hollis-Chatfield-Rock outcrop complex, 3 to 15 percent slopes	24.9	13.6%
75E	Hollis-Chatfield-Rock outcrop complex, 15 to 45 percent slopes	29.5	16.2%
76E	Rock outcrop-Hollis complex, 3 to 45 percent slopes	3.8	2.1%
86D	Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony	1.2	0.6%
701B	Ninigret fine sandy loam, 3 to 8 percent slopes	0.1	0.0%
W	Water	3.2	1.7%
Totals for Area of Interest		182.8	100.0%

Civil Engineering and Site Planning 1297 RT 163 Oakdale, CT 06370 860 884-9671

	DRAINAGE	AGE AREAS		
	SCALE: 1"=400' &	×	as noted	
DATE: 16 AUG 2021				
	JOB NUMBER		SHEET	
			1 of 1	